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Abstract

This paper describes a few basic characteristics of Rued-nberg bond order from both
resonance-theoretic and molecular-orbital-theoretic aspec  and manifests its usefulness
and validity through illustrative bond order analysis of several regular alternants
containing 4n-membered rings. Ruedenberg bond order is shown to be related with
resonance structures exactly and to be regared as distributed valence which can be not
only fractional but also negative or larger than unity in sharp contrast with Pauling bond
order. It is pointed out that Ruedenberg bond order can reflect reactivity-stability
characters of regular alternants more sensitively than Coulson bond order, having a close
connection to the frontier orbital bond order. Behaviors of Ruedenberg and Pauling
bond orders are compared in regular alternants containing 4n-membered rings and
Pauling bond order is concluded to be a superfluous concept.

1. Introduction

Bond orders are the most useful concept for analyzing bonding characters between
sites and, therefore, often helpful for considering reactivities and stabilities of systems
semiquantitatively or, at least, qualitatively. Bond order analysis can be a handy desk
tool for chemists because of its great simplicity. The following three kinds of bond
orders are well-known."

Let ¢;, and A; be, respectively, the site-r component of the j-th eigenvector and its
eigenvalue of the adjacency matrix A of a simple Hiickel system. From a molecular-
orbital-theoretic standpoint, Coulson has defined the bond order p between sites r and s
as ?

Prs = 241 Cjy Cjs (r#s), (1)
J

where n;is the occupation number of the j-th eigenvector. Possible values for n; are,
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naturally, 0, 1, and 2. Coulson bond order, abbreviated to CBO below, has a clear
theoretical ground and can be defined for any state of any Hiickel system. CBO has
been used most widely and most frequently.

On the other hand, from a resonance-theoretic standpoint, Pauling has introduced
another kind of bond orders for systems having Kekulé structures. Let K be the number
of Kekulé structures of a system and let K(rs) be that of Kekulé structures having a bond
between sites r and s. Then, Pauling bond order, abbreviated to PBO below, is defined
for adjacent site pairs as 3

k. = K(rs) IK (rs adjacent). (2)

PBO inherently assumes normal states.¥ Some correlation has been found between PBO
and CBO in benzenoids empirically, though the correlation is not very tight.”

The third kind of bond orders, originating with Ruedenberg,® is again molecular-
orbital-theoretic in its definition but actually resonance-theoretic in its behavior.
Ruedenberg bond order, abbreviated to RBO below, is defined as

v,s=2n,~ Cjr st/Aj (r;t S). (3)
J

This definition is valid for any state of any regular system, that is, any system having no
nonbonding orbital. In particular, for normal states of regular alternants, n; is two for
each orbital j of positive A; and vanishes otherwise. Then, v, is simply the rs component
of A-!; furthermore, we have®”

Vys = kys (rs adjacent) (4)

for what we call benzenoids.® This remarkable fact seems to have led to a misleading
interpretation that RBO is merely a molecular-orbital-theoretic expression of PBO.
Presumably because of this and because of great success and prevalence of molecular
orbital theory, RBO has drawn no practical attention in spite of its own significance.

In what follows, let us confine ourselves to normal states throughout. Exactly
speaking, we have the above-mentioned equality between RBO and PBO for regular
alternants containing no 4n-membered ring, which are tentatively termed canonical
alternants for convenience sake. This paper aims to clarify a few basic characteristics
of RBO and to manifest its usefulness and validity by examining behaviors of RBO
in noncanonical regular alternants.”
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2. Characteristics of RBO

In even alternants consisting of m starred and m unstarred sites, we can introduce the
resonance structure parity to m! resonance structures having m bonds all between starred
and unstarred sites by using the parity of permutations of the symmetric group of degree
m.'” Dewar structures can be defined as resonance structures that have m—1 adjacent
bonds and one nonadjacent bond between starred and unstarred sites. It is convenient to
refer to Dewar structures having a nonadjacent bond between sites r and s as rs-Dewar
structures and to Kekulé structures having a bond between sites r and s as rs-Kekulé
structures. Let K, be the number of Kekulé structures of parity 7 and let J,(rs) be that
of rs-Kekulé or rs-Dewar structures of parity » for pair rs of starred and unstarred sites
and be zero for pair s of starred or unstarred sites. Then, for regular alternants,'” we can
prove

Vis = (J+(rs) =J —(rs)) / (K+ —K-). (5)

See Appendix for some details of derivation. Note that the parity of rs-Kekulé or rs-
Dewar structures in the numerator is determined on the same base as that of Kekulé
structures in the denominator.*'? By appropriate numbering of sites, we can always set
the denominator to be positive but, then, it is possible for the numerator to be negative or
larger than the denominator.

If all Kekulé structures of a regular alternant have an identical parity, we can set
J _(rs) for adjacent site pair rs to vanish as well as K_ and can identify v,; with k,; .
However, even in canonical alternants, we have to take the resonance structure parity
into account to calculate v,, for nonadjacent pair rs of starred and unstarred sites.'®
Though the parity-dependent enumeration of Kekulé and Dewar structures provides a
plain way of calculating A ~! for moderate systems, this is merely technical and may be
secondary. It is important that RBO is related with Kekulé and Dewar structures in a
simple, exact way and, in particular, that contributions from resonance structures of
different parities interfere with each other in RBO.

Let N, denote the set of sites adjacent to site r. For alternants having Kekulé structures,
since we have

2 K(rs)=K, (6)
SEN,
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it follows that

S ky=1. (7)
SEN,
Interpreting this as if the unit valence of a site is distributed to its bondings with adjacent
sites, we can regard PBO as distributed valence. Naturally, PBO lies between zero and
unity. On the other hand, from

AA'=1 (8)

it also follows for regular alternants that

> ve=1 (9)
SEN,
and RBO between adjacent sites can be regarded as distributed valence as PBO.
However, RBO can be not only fractional but also negative or larger than unity in sharp
contrast with PBO. Appearing in many noncanonical regular alternants, negative
distributed valence peculiar to RBO is not exceptional at all.

In RBO the contribution c;, ¢j; from occupied orbital j is weighted by the factor 1/4;,
as is obvious from the original definition. Namely, RBO puts greater stress on
contributions from shallower orbitals, compared with CBO. Because shallower orbitals
affect chemical reactivities more strongly, RBO can reflect reactivity-stability characters
of regular alternants more sensitively than CBO.'¥ The roughest one-term approxima-
tion of v,, is the partial RBO vy of the highest occupied orbital A,

v;s = 2chr chs//{m (10)
which is proportional to
frx = 2Cpy Chs (11)

in a given system. This quantity is nothing other than the partial bond order of the
frontier orbital. Actually, since we can obtain v,; without solving the eigenvalue problem
of A and the evaluation of v,; is much easier than that of v’; or f;; in general, the one-term
approximation has no practical value at all. It is helpful, however, for understanding a
nature of RBO.
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Exemplary comparisons of RBO with other bond order quantities are shown in Table 1
for cyclobutabenzene and biphenylene.' There exists qualitative resemblance between
Vis, Vrs, frs, and p,s, while k., is rather contrary to the others in a few respects.

Table 1. Bond Order Quantities in Noncanonical Regular Alternants

System
) rs Vv Vv, k
Numbenng rs rs frs prs rs
Cyclobutabenzene 12 2 0.8931 0.2343 0.8975 213
2 2a -1 —0.6588 —0.1728 0.2149 173
6
5 6a | 2a3 1 0.3003 0.0788 0.7285 173
34 0 —0.2516 —0.0660 0.5626 2/3
4 2a 2 45 1 0.3411 0.0895 0.7315 173
3 6a2a 1 0.4859 0.1275 0.5498 173
Biphenylene 12 173 —0.1089 —0.0485 0.6208 3/5
8 1 23 2/3 0.1962 0.0873 0.6907 2/5
7 8a 8b 2 44a 2/3 0.1358 0.0604 0.6830 2/5
4adb —173 —0.3051 —0.1358 0.2634 1/5
6 4b 4a 3
5 4 8b4a 2/3 0.3051 0.1358 0.5648 2/5

3. RBO Analysis of Noncanonical Regular Alternants

This section provides a few examples of applications of RBO analysis. The examples
deal mostly with noncanonical regular alternants, where RBO differs from PBO
necessarily and comparison between them is possible.

The first example concerns electronic structures of two-ring ortho-condensed systems
composed of 4- and 8-membered rings, cyclobutacyclobutene, cyclobutacyclooctene,
and cyclooctacyclooctene. These systems have RBOs quite different from PBOs as shown
in Fig. 1. The most remarkable fact is that negative RBOs appear on the bridging o-
bonds. This fact seems to be related with Hiickel’s rule. The three systems have 4n+2
sites in their perimeters and it is reasonable to infer that the systems tend to resemble the
corresponding cyclic systems of 4n+2 sites in electronic structure.'® The degree of
delocalization in the perimeters is not so complete as that in [4n+2]-annulenes but
similar to that in linear polyenes. On the other hand, PBO analysis suggests greatly
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delocalized electronic structures, the degree of delocalization being as large as that in
naphthalene. This clearly contradicts real instabilities of the systems. For reference,
Fig. 2 shows RBOs of linear polyenes, [4n+2]-annulenes, and naphthalene.
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1 1 3 3 2
3 3 3

3

Fig. 1. RBOs and PBOs of ortho-condensed 4- and 8-membered rings.
RBOs are bold-faced.

2 4
3 3
1 1 1

(a)
(b) (c)

Fig. 2. RBOs of (a) linear polyenes, (b) [4n+2]-annulenes, and (c) naphthalene.

The second example makes a comparison of biphenyl, biphenylene, and triphenylene.
These systems can be regarded as composite systems of interacting benzene subsystems.
The bond order on the o-bond connecting benzene subsystems is considered to represent
a feature of intersubsystem interaction. From RBOs shown in Fig. 3, we can infer that
the order of strength of intersubsystem interaction is triphenylene > biphenylene >
biphenyl but that benzene subsystems interact antibondingly in biphenylene. This
accords with the fact that the stabilization energy of biphenylene is small.!” Moreover,

6
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RBO analysis suggests that the delocalization in the benzene subsystems of biphenylene
is rather opposite to that of naphthalene. This is consistent with the well-known
experimental fact that the most reactive is position 1 in naphthalene but position 2
in biphenylene.'® Though PBO analysis leads to the same order of strength of
intersubsystem interaction as RBO analysis, PBO of biphenylene suggests a
naphthalene-like electronic structure, which clearly contradicts the experimental facts
mentioned above.
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Fig. 3. RBOs and PBOs of (a) biphenyl, (b) biphenylene, and (c) triphenylene.
RBOs are bold-faced; PBO is identical with RBO for (a) and (c).

As the last example, let us treat the problem on stabilities of biphenylene and
its isomers, cyclobuta[a]naphthalene and cyclobuta[b]naphthalene. This problem has
been taken first by Coulson and Poole ' and next by Wilcox.?? The correct order of
stability, biphenylene > cyclobuta[b]naphthalene > cyclobuta[a]naphthalene, can be
obtained by the comparison of the algebraic structure count and by Hiickel orbital theory
but cannot by the comparison of the number of Kekulé structures.'®2" Figure 4 shows
RBOs and PBOs of cyclobutanaphthalenes. For biphenylene see Fig. 3(b) again. What
should be noted is the negative RBOs and the large positive RBO on the cyclobutadiene
rings. From the degree of antibonding interaction and that of bond fixation indicated by
these RBOs, we can clearly obtain the correct order of stability. PBO analysis provides
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spurious smooth delocalizations for all and fails as the comparison of the number of
Kekulé structures. Although comparisons of the algebraic structure count may succeed
to predict the order of stability, it is possible or rather probable for RBO analysis to
elucidate some “reason” for it.
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Fig. 4. RBOs and PBO:s of (a) cyclobuta[a]naphthalene and (b) cyclobuta[b]naphthalene.
RBOs are bold-faced.

4. Concluding Remarks

RBO for normal states is a simple quantity related directly to adjacency of sites and
can be evaluated quite easily. Still, it has sound characteristics appropriate for analyzing
bonding characters between sites. In particular, RBO analysis is expected to provide
some essential information on peculiar electronic structures of noncanonical regular
alternants, as illustrated in the preceding section.

It is now evident that PBO cannot represent any real situation of electronic structures
at all in noncanonical regular alternants. Delocalized electronic structures suggested by
PBO in noncanonical regular alternants are a consequence of neglecting the parity of

8
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Kekulé structures and are necessarily spurious. PBO works well only when it coincides
with RBO. We have to say that it was purely fortunate for PBO that all Kekuké
structures have an identical parity in benzenoids. Even for benzenoids, of course, we
must introduce the resonance structure parity for extending “PBO” to nonadjacent site
pairs. Thus the concept of PBO is concluded to be superfluous. RBO is true resonance-
theoretic bond order.

Appendix

Consider a regular alternant of 2m sites. Numbering the starred and the unstarred sites from 1 to m
and from m+1 to 2m, respectively, we can write A and A~' as

0 B
A= (A1)
‘B 0
and
0 IB -1
Al= (A2)
B' 0

with the half-size submatrix B whose rs component b, is the 7, s+m component of A. Obviously, v,
vanishes for pair rs of starred or unstarred sites. Denote the set {1, ***, m} and {m+1, --*, 2m} of
natural numbers by M and L, respectively, and designate s—m as § for s € L. Then, since A~! is real-
symmetric, we have

v,s =cof | B(r3) | /det | B | (reM,s€L), (A3)

where cof | B(r5) | stands for the cofactor of b,s in B.

Let S be the symmetric group of degree m and indicate the parity of permutation x by sign 7,.
Because each permutation of § corresponds uniquely to a resonance structure having m bonds all
between starred and unstarred sites, we can define the parity of such a resonance structure by the sign
of the corresponding permutation. Let T be the subset of all permutations corresponding to Kekulé
structures in S. Each summand in the right-hand side of

det|Bl= 2 7x I bt,xt (A4)
x€S’ teM
survives only when all b, ,, for given x are equal to unity, so that we have
det|Bl=3 n,=K,-K. (AS)
x€T

The numerator can be treated likewise. Let S(r5) be the subset of all permutations mapping r to 5 in S
and let 7(r5) be the subset of all permutations corresponding to rs-Kekulé or rs-Dewar structures in
S(r¥). Since cof | B(r3) | is the coefficient of b,; in the expansion of det | B |, hamely,
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cof |IBrs)l= 2 7.0l by, (A6)
xES@US) tEM
t#r

it follows that

cof | B(r3) | =
xET(rs

. J,(rs) — J (rs). (A7)
rs
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