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Abstract

This note presents a simple theorem expressing superdelocalizabilities solely in
terms of site-site mutabilities in regular alternants. The theorem provides an
explicit relationship between self-mutability and superdelocalizability and
manifests similarities and differences between the two quantities, leading to a
concise interpretation on the physical meaning of superdelocalizability. The
theorem is also practically useful for estimating superdelocalizabilities from
site-site mutabilities. An effective approximation for estimation is examined with
numerical examples. Supplementary remarks are added on the expression of

superdelocalizabilities between different sites.

1. Introduction

Self-mutability"?and superdelocalizability®are the most reliable indices of
reactivity in the Hiickel model. These two indices behave surprizingly in parallel
with each other and always provide the same conclusion regarding site reactivities
in conjugated hydrocarbons. The existence of such correlations between several
indices of reactivity (the above two, localization energy, free valence, and so on) has
been proved mathematically under a certain condition (Condition A) fulfilled in
many conjugated hydrocarbons.’””However, aside from approximate relationships,®
no explicit relationship between the indices has been found so far.

This note derives a theorem on an explicit relationship between self-mutability
and superdelocalizability in regular alternants from the hypervirial condition.®'®
Because the theorem is essentially a consequence of alternant symmetry, a few other
derivations are, of course, possible and not difficult at all. Still, the present
derivation seems to be the most straightforward.
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2. Theorem

Consider a simple Hiickel model of a regular alternant, an alternant system
having no nonbonding orbital. The sites of the system are divided into the set of
starred sites and that of unstarred sites with the alternant symmetry parity. Let
E™ be the matrix whose s component is &8,: 8s«, namely the matrix unit of the fu

component, and define the perturbation matrix D' for site pair tu as
Di*=(E™+E*)/(1+ Stu). (1)

Then, using the adjacency matrix A of the system and the bond order matrix P,'"'we
can write the hypervirial condition upon the mutability matrix I’ for the

perturbation on site pair fx as”

[A, 1*]=[P, D*]. (2)

This note uses what is called dimensionless mutability throughout.'”

Suppose a normal state'¥and consider the case of site perturbations, namely,
the case of t=u in Eq. 2. The alternant symmetry enables us to write A, P, and

7% in the form

0 Axo
A :( (3)
Ao* 0 ))
P 0 P, >
PO* O ) (4)
and
tt
Jit= e 0 (5)
0 IS

with appropriate half-size submatrices. Since we can assume site ¢ to be starred,
that is, D** to have the form

th:< o 0 (6)
0 0
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without loss of generality, the above hypervirial condition can be rewritten as
H”t‘f“ *OWA*OHO“‘O:D"EE" *0 (7)

which is a basis of the present derivation.
Note that the superdelocalizability on site ¢ is given by the diagonal component s:
of the matrix'®

(8)

S:PA—1:<1)*O(A*O)_1 0 >

0 Por(Aoy) ™

Therefore, multiplying (A.)™' from the right in Eq. 7 and taking the trace, we
obtain

Tr(mL) —Tr(IIiL) = su. (9)
On the other hand, the number conservation condition®®

Tr (1) =0 (tu arbitrary) (10)
immediately leads to

Tr (II4) + Tr (I124) =0. (11)
A combination of Egs. 9 and 11 yields

Su=2Tr (ITiL (¢ starred) . (12)

It will be preferable to put this result in the form of a theorem with the use of
traditional notation for s;; and = .

Theorem  Let S: be the superdelocalizability on site t and x,, be the site-site

mutability for sites v and t in a regular alternant. Let T be the set of sites having the
same parity as t. Then, the relationship

St:zf%"nr" (13)

holds.
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3. Significance
In this section, site-site mutabilities are referred to simply as mutabilities. Let
8g» be the change of the electron density ¢, on site r caused by the infinitesimal
perturbation 87. on site . The definition of mutability means

> 0q:r= %m,t . (14)

TET

Hence, while self-mutability concerns only the change of the electron density on a
perturbed site, superdelocalizability does the total change of the electron densities
on all the sites having the same parity as a perturbed site. Let T be the set of sites
having the parity opposite to the parity of ¢ and let @, be the total electron density
on all the sites of X ;

Q.= 2.q- (X=T or T). (15)

TEX

Then, we can write S; as

0@
St 287” 7t=0 (16)
or, going back to Eq. 9,
0Qr 0QT
=5 — 7
Sc= G o IU B (17)

We can thus interpret S; as the index showing how greatly electron clouds move
from the sites of T to the sites of T by the perturbation on &

The topological distance d,: between sites r and ¢ is defined as the shortest path,
namely, the minimum number of bonds between r and ¢. Though we have no
sufficient quantitative theory of mutabilities, the general inclination is known that
nr. decreases in absolute value alternating the sign as d,. increases.'”In particular,
nr: for d.=2 is already remarkably smaller than .. in conjugated hydro-
carbons.'® Hence, neglecting all but the term for distance zero in Eq. 13, we have

St~2”t,t , (18)
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which explains the strong correlation between the two indices most simply. The
smallness of the neglected terms suggests that the correlation must be retained
extensively beyond Condition A.”!”

The theorem also has some practical significance besides the conceptual one
mentioned above. The computation of superdelocalizabilities is rather easier than
that of mutabilities. If one intends to evaluate only superdelocalizabilities but not
mutabilities, one may use data of Hiickel orbitals directly. However, when one
evaluates mutabilities as well as superdelocalizabilities, or when one evaluates
superdelocalizabilities for systems whose mutabilities are already known, the
theorem is quite helpful; it enables us to compute superdelocalizabilities from data
of mutabilities even without the use of computers.

Let 7. and T. denote the sets of sites apart from site ¢ by even distance d and by
odd distance d, respectively. Because of the reason already mentioned, “the second

neighbor approximation”

S, ~2(x, ,+ 2700) (19)
r€Ty

1s expected to be effective unless the system is peculiarly enormous. Table 1 shows
numerical examples of this approximation for several conjugated hydrocarbons,
where the approximation is successful in reproducing superdelocalizabilities, at
least, with over 93 percent accuracy. It should be noted that the approximation
works well even when the contribution from 2x.. is only about 80 percent of S.. If
the number conservation condition is not employed, or if mutabilities for sites of the
same parity are eliminated, we have the series

St:”zt_27r7’t+ zﬂr,t_zﬂr,t+"' (20)
! T€T1 TET, T€T3
or the series
St:'—2<z7fr,t+z7f1,t+z7f1'.t+"'). (21)
T€T, r€T3 T€Ts

However, these do not seem to yield any efficient approximation, because —r,,. for
odd d,: does not decrease so rapidly as =, for even d,. as d,. increases. The
decrease in —x,: from d,;=1 to 3 is not very large in conjugated hydrocarbons and
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—-nr: for drr=3is always larger and often much larger than =,. for d,,=2. Even

—-n,.: for d,, =5 sometimes exceeds x,., for d,,=2.'%

Table 1. Second Neighbor Approximation of Superdelocalizabilities

nulisllasetfir:g” t 2 (%) Z(m"tezrzm't) (%) S
Hexatriene 1 1.369 (87.7) 1.532 (98.2) 1.560
L2, 2 0.784  (90.0) 0.843  (96.8) 0.871
2 3 0.950  (81.0) 1.173 (100) 1.173
Biphenyl 1 0.688  (89.1) 0.761 (98.6) 0.772
2 3 2 0.847  (93.1) 0.907  (99.7) 0.910
<:>_1<:>4 3 0.792  (95.4) 0.826  (99.5) 0.830
4 0.822  (92.0) 0.881 (98.5) 0.894
Anthracene 1 0.908  (84.6) 1.043  (97.1) 1.073
9 1 2 0.822  (89.1) 0.883  (95.8) 0.922
(II)Z 9 1.051 (80.1) 1.257  (95.7) 1.313
0 4a 0.663  (92.1) 0.713  (99.0) 0.720
Phenanthrene 1 0.878 (89.9) 0.968 (99.1) 0.977
2 0.806  (93.6) 0.851 (98.9) 0.860
9 3 0.817 (91.5) 0.872  (97.7) 0.893
8a, 1 4 0.859  (91.4) 0.927  (98.6) 0.939
2 9 0.885 (88.7) 0.973  (97.5) 0.997
4‘4 / 4a 0.699 (89.4) 0.774  (99.1) 0.781
8a 0.667 (91.2) 0.721 (98.5) 0.732
Naphthacene 1 0.915 (81.6) 1.069 (95.3) 1.121
. 2 0.828  (86.1) 0.895  (93.2) 0.961
2 5 1.112  (73.9) 1.400  (93.0) 1.505
m 4a 0.667  (88.9) 0.728  (97.0) 0.751
ey 4s 5a 0.663  (92.5) 0.707  (98.7) 0.717
Chrysene 1 0.882  (88.9) 0.978  (98.5) 0.992
2 0.806  (93.3) 0.853  (98.7) 0.864
3 0.818  (91.2) 0.874  (97.4) 0.897
! 4 0.863 (90.4) 0.935 (98.0) 0.954
2 5 0.861 (90.3) 0.926  (97.1) 0.954
Tavy 3 6 0.902  (86.4) 1.004  (96.2) 1.044
N 4a 0.696  (90.0) 0.768  (99.4) 0.773
4b 0.712  (86.1) 0.808  (97.7) 0.827
6a 0.665  (92.3) 0.716  (99.3) 0.720

* ) [UPAC Nomenclature
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Table 1. Continued

system

numbering®’ t 2re.e ( % ) 2(m,:+16212nr.:) (%) S,
Triphenylene 2 1 0.854 (92.0) 0.920 (99.1) 0.928
1 2 0.811 (92.7) 0.860 (98.4) 0.875
q% 4a 0.700 (89.0) 0.774 (98.3) 0.787
a
Pyrene 1 1 0.932 (83.6) 1.072 (96.2) 1.115
2 2 0.790 (95.3) 0.822 (99.2) 0.828
“ 4 0.889 (86.6) 0.987 (96.2) 1.026
‘ﬁ 3a 3a 0.672 (89.2) 0.731 (97.0) 0.753
4 10b 0.700 (92.1) 0.757 (99.5) 0.761
Perylene . 1 0.915 (82.0) 1.041 (93.2) 1.117
1 3 0.796 (93.0) 0.834 (97.3) 0.856
3a 0.952 (79.7) 1.119 (93.7) 1.195
3a 0.657 (93.7) 0.700 (99.7) 0.702
62 6a 0.717 (82.3) 0.816 (93.7) 0.871
12¢ 0.699 (92.4) 0.755 (99.8) 0.757
Coronene 1 1 0.879 (88.9) 0.965 (97.5) 0.989
2a 0.684 (87.2) 0.757 (96.5) 0.784
12b 0.705 (90.0) 0.767 (97.8) 0.784

* ) [UPAC Nomenclature

Mutability is obviously a much simpler concept than superdelocalizability both
physically and mathematically. It is not improbable for an effective approximation
of mutabilities to be found. The theorem gives us a natural way of applying it to
superdelocalizabilities. There exists, at present, no approximation of mutabilities
sufficient to give a fine estimation of superdelocalizabilities.

4, Supplementary Remarks

The superdelocalizability between different sites ¢ and # of the same parity is well
defined as the fx# component s:. of the matrix S. The assumption of ¢#« in Eq. 2

7
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readily leads us to
Tr(1.y) —Tr(Ik) =2s,, (22)

and the preceding interpretation of S: can be applied to sw as well. Using the

number conservation condition and the traditional notation for =, we obtain

Stu:zﬂ'r,lu (ue]: uit) (23>

r€T

Since the right hand side contains no term so dominant as self-mutabilities, this
relationship clarifies that superdelocalizabilities between different sites must be
much smaller than superdelocalizabilities on sites. However, we have so little
knowlege of site-site pair mutabilities either theoretically or empirically that we
cannot proceed further at present.
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