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Intersection numbers of cycles on a 4-fold
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Summary

Intersection numbers of cycles on a variety play a very important role in numerical methods
studying varieties. In particular, after a monoidal transformation, intersection numbers between the
exceptional and pulled-back cycles are essencial in birational geometry. Two- and three-dimensional
cases are well-known, and this note deals with the four-dimensional case and derives explicit formulae

for that case.
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Section 0. Introduction

Intersection numbers between cycles in a variety play a very important role in numerical
approach to any problem in algebraic geometry. In particular, we are interested in the
intersection numbers with exceptional cycles after a monoidal transformation. In a surface
case, as is well-known, the intersection number with an exceptional curve is very simplé.
In a 3-fold case the table of intersection numbers with exceptional cycles can be found in
some papers, for example in [Iskovskih]. In a 4-fold case the author has not seen this kind
of table in any paper, so we will complete table.

To calculate the intersection numbers, we have a framework, as established in [Manin] ;
thus, we can recall it as shown in Section 1. This calculation should be separated into three
cases according to the dimension of the center of a monoidal transformation : thé point
case is treated in Section 2 ; the curve case in Section 3 ; and the surface case in Section

4. We summarize combinatorical calculation at the end of this paper, in the Appendix. The
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intersection tables are finally shown in (2.6), (3.5), and (4.5), respectively.
The auther would like to express his thanks to Mr. Takashi Maeda for his useful

conversation and my gratitude to Prof. Shigeru Mukai for his encouragement.
Section 1. Preliminary and fundamental results

(1.0) In this section we recall fundamental results on intersection numbers following
[Manin].

(1.1) Let X be a regular noetherian scheme with an ample invertible sheaf, where a
scheme X is called regular if there exists an integer n such that each coherent sheaf on
X has locally everywhere a free resolution of length<n, equivalently if all of its local rings
are regular local rings.

We now introduce the Grothendieck group K(X) of X. Let S be the category of coherent
sheaves on X and L its full subcategory of locally free sheaves. Let Z[S] (resp. Z[L]) denote
the free abelian group generated by the classes [ /'] up to isomorphism of sheaves F' in
S (resp. in L). For each exact seqgence

0=F1—=F=F3—0
of sheaves in S (resp. in L), we form the element

[F2]—[F1]—[F3]
in Z[S] (resp. in Z[L]) and consider the subgroup I (resp. J) generated by these elements
in Z[S] (resp. in ZI[L]). If X is regular with an ample invertible sheaf, then

ZI[S1/1=Z[1L1/],
and this quotient group is called the Grothendieck group K(X) of X ([Manin, 1.9]). We
denote by cl(F') the class corresponding to F' in K(X).

(12) The group K(X) becomes a commutative ring with identity 1=cl{(Ox) when
multiplication is defined by

cl(F1) « cl(F2) =cl(F1®F2).
This multiplication corresponds to the intersection of cycles as follows :

cl(Ovy1) * cl(Ov2) =cl(Ovinvye).

(13) A closed subscheme Y in X is said to be regularly embedded if for each point
y of Y there exists an affine neighbourhood U=Spec A such that the ideal I of A defining
Y in U is generated by an A-regular sequence.

Let Y be a regularly embedded closed subscheme in X with defining ideal I and Oy
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= Ox/I its structure sheaf. Then the conormal sheaf
C=l/1"y
is locally free Ovy-module, and its rank at y on Y is equal to the local number of equations

defining Y in the neighbourhood of this point.

(1.4) Theorem ([Manin, 3.10]). For any regular noetherian scheme X there exist uniquely
defined mappings

Al KX)-KX) (=0, 1, 2, ..),
satisfying the conditions

Acl(F)) =cl(4'(F))
for any locally free Ox-module F'.

(1.4.1) Particularly, A°(x) =1 and A!(x) =x for any x € K(X). For any x € K(X) we now
put

At(X)Zili(x) o th

i=0

then we have At(x+y)=A4:(x) * A:(y) for any two elements x, y € K(X).

(1.5) Proposition (Projection Formula, [Manin, 7.13]). Let f: X—Y be a projective
morphism of regular noetherian schemes, x € K(X), and y € K(Y). Then
fe(xf*(y)=fs(x) *v.

(1.6) We next introduce a filtration into the ring K(X) as follows.
(1.6.1) The operations
r't KX)—-KX) (=0, 1,2, ..)

are defined by

re(x) = iijo r'(x) cti=Ava-n(x) = g)/li(x) (t+t2+--)i

in the multiplicative group 1+t « K[[t]].

(1.6.2) The following equarities immediately from the definition :

(@) r’"®)=Ax)=1, r'x)=A'(x)=x for any x€ K(X) ;

(b) rix+y)=re«x) * r«(y) for any two X, y € K(X) ;

(© r(€—-1D)=1+(&—1) +t for the class ¢ of an invertible sheaf, i.e., 7°(£ ~1) =1,
r'(¢ —=1)=¢ -1, and 7' (¢ —1)=0 for any integer i=2.

(1.6.3) We define a filtration of the ring K(X) as follows : the Z-submodule FK (X)

is generated by elements cl(Z)-r for each locally free sheaf F of rank r, and the Z‘submodulesv
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F'K (X) is generated by elements r1(x1) 7k (xx)™*, where xi € FIK(X) and ari;n. Now

set GK(X) =FK (X)/F*K(X) and GK(X)= io GKX).

(1.6.4) It is obvious that F'K(X) « FIK(X) CF*K(X).

(1.6.5) Theorem ([Manin, 9.1]). Let X be a regular noetherian scheme of dimension d
with an ample sheaf. Then

F4IK(X) =0.

(1.6.6) For any locally free sheaf F of rank r on X, we get an expression of 7 :

P -n=2 0 @),
where [ ] is the binomial coefficient (see Appendix). A proof of this equality will be given
in Appendix (A.6).

(1.6.7) For any locally free sheaf F of rank r on X

A-1(cl(F)) = (=D r (cl(F) —1).
Indeed, by (1.6.6) we have

(P -D=2 (-]

r—r+i

]A’“i(cl(F))= (=1 A (el (F)).

i i=0
(1.7) Let F be a locally free sheaf of rank rkF on the scheme X. For any positive integer
i, put
ci(F)=7r(cl(F) —rkF) mod FI''K(X) € GK(X),
which is called the i-th Chern class of F.
(1.7.1) For i>rkF, ci(F)=0 ([Manin, 11.2.5]). This follows from (1.6.6).
(1.7.2) For any exact sequence
0—~E—->F—->G—0

of locally free sheaves on X, we have
G (F) =B a(E) * cul(G)

because

P CUF) 1k F) =7 (el (E) ~1kE) + (el (G) ~rkG))
= 3 A (C(E) ~1kE) + 7 () ~1kG).

(1.7.3) Lemma. For any locally free sheaf G of rank r on X, the first Chern class of

G equals to one of its highest exterior product 4'(F) modulo F?K(X).

PROOF. Applying the splitting principle to F, we can assume that cl(F) =i:Zléa. For
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x=4 1+, the equality A%x=¥¢1- ¢ deduces that
ci(A%)=A%—1={1—-1) « C2-1)+41+€:—-2=c1(x).

Using the above fact recursively, we prove this lemma in general case.

(1.8) For any morphism f : X—Y of regular noetherian schemes, the pull-back f* operates
compatibly with the above filtration. Indeed, we have that
(AN (F))=4(*(F))
for any locally free sheaf F' on Y, and hence that
f* (Au(y)) =A(f* ()
for any element y € K(Y). Thus the definition of r follows that
f* (r () =f*Quva-u @) =Ava-o (f* (¥)) =r(f* (y)), ie, ') =rif*(y))
for each coefficient of t'. Therefore we have natural homomorphisms
f* . FIK(Y)>FK(X)
of Z-modules, and an induced ring homomorphism
Gf* : GK(Y)—GK(X).
Moreover we get
f* (i (F)) =ci(f* (F))
for the i-th Chern classes of locally free sheaf F on Y.

(1.9) Let Y be a regularly embedded closed subscheme of a regular noetherian scheme

X, f: X’>X a monoidal transformation with center Y, and Y’ an exceptional divisor :

Y L X’
g l : l« f.
Y —» X

Let C and C’ be the conormal sheaves of Y and Y’ respectively. Then g : Y'—Y is a projective
bundle of relative dimension rkC-1.

(19.1) Proposition ([Manin, 13.4, 13.5]). For any element y € K(Y) we have

i*ix (y) =y « A-1(cl(C)).
Moreover for any two elements yi, y2 € K(Y)

e (y1) e (y2) =ix(y1+y2* A-1(cl(C))) in K(X).

(1.9.2) Proposition ([Manin, 13.7]). Let F' be the kernel of a canonical epimorphism
g*C—C’. Then for each element y € K(Y) we have

1. (y) =ja (" (y) * A-1(cl(F))) in KX).

(1.10) Let Y be a regularly embedded closed subscheme of a regular noetherian scheme
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X,i: Y—X, C a conormal sheaf of Y, and 2x (resp. 2v) a sheaf of differentials of X (resp.
Y). There is a natural exact sequence

0— C —i* (2x) > 2vy—0
of sheaves on Y, hence it follows from (1.7.2) and (1.7.3) that

c1(C) =1*(c1(2x)) —c1(2y) =i*(c1(4"2x)) —c1(A™2v) =i*(c1(—~Kx)) —c1(—Ky) mod F*K(X).

Section 2. The case where the center is a point

(2.0) From this section to the end of this paper, we consider the monoidal transformations
of only four-dimensional varieties and fix the following notation ; let Y be a regular subvariety
of aregular 4-fold X, f : X’>X a monoidal transformation with center Y, and Y’ an exceptional

divisor for f;

v by
ng , lf‘
Y — X

Let C and C’ be the conormal sheaves of Y and Y’ respectively, and ¢ =cl(C’) in K(Y’).
We want to calculate the intersection numbers between Y’ and pulled-back cycles. For a
while we consider all cases, without the dimensional restriction on the center of monoidal

transformation.

(2.1) Considering an exact sequence
0—>F——>g* C—C ’——-)0,

we have ‘
g (Ci(C))ECi(g*(C))Eé}OCk(F) e cik(C)=ci(F) +cim1(F) a(£)

by (1.8), (1.7.2), and(1.7.1). Consequently

(2.1.1) —c(d)=—g*(c(C)) +a(F),

(21.2) —c1(4) s c1i(F)=—g* (c2(C)) +c2(F), and
(213) —c1(?) « c2(F)=—g"(cs(C)) +ca3(F).

(2.2) Applying Proposition (1.9.1) to a regular embedding j: Y'—X’, and replacing y
with the class 1y=cl(Oy) corresponding to a cycle Y’ in K(Y’), we have
B (1y) 2 g (Iy) =js (Iyr e 1y e A-1(€)) =jx (A1(£))
in K(X’). Since the class £ =cl(C’) corresponds to an invertible sheaf, we get
Aal)=—a¥)
by (1.6.7) and hence
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(22.1) G« (1v))2==ju (g c1(C)) +ix (1 (F))
by (2.1.1). Therefore it follows from (2.1.1)-(2.1.3) that
(22.2) (G«(1v))3=—ju(g*c1(C) * (=c1(€))) +jx (1 (F) + (—c1(€)))
=ju (g (c1(C))? —jx (g" (c1(C)) * c1(F)) —ju(g* (c2(C))) +ijx(c2(F))
=i, (g* (c1(C)2—c2(C))) —jx (g*(c1(C)) * c1(F)) +ja(c2(F)) and
(22.3) G« Ay))*=ju(—g*c1(C)2c1(€)) —jx (—g*c2(C) * c1(¥))
—jx(—g*c1(C) * c1(F) * c1(€)) +js (—c2(F) + c1(4))
=—ju(g*c1(C)®) +js (g crt(C) 2+ c1(F)) +js (8" (c2(C) *» c1(C)))
—js(g*c2(C) » c1(F)) +ja (g* (c1(C) + c2(C)))
—jx(g*c1(C) * c2(F)) —ja (g* (cs(C))) +jx (c3(F))
= —j. (g* (c1(C)3+2c1(C) * c2(C) —c3(C))) +jx(g* (c1(C)2—c2(C)) * c1(F))
—jx (@ (c1(C)) * c2(F)) +ix(c3(F)).

(2.3) In the rest of this section we treat the case where the center Y of monoidal
transformation is a point. This is the simplest case.

(2.3.1) Since the center Y is a point, FIK(Y) =0 by Theorem (1.6.5) and hence

ca(C)=c2(C)=c3(C)=0 in GK(Y).

(2.4) Thus relations (2.1.1)-(2.1.3) are following :
24.1) a(F)=—-ca),
(242) c2(F)=—c1(4) ci(F)=c1(¢)? and
(243) a(F)=—cal) sc(F)=—a¢)?;
and (2.2.1)-(
(24.4) G« Av))2=ju(ci(F)) =—jx(c1(£)),
(245) (G« (Av))°=ju(c2(F)) =ja(c1(£)?), and
(24.6) G+ (Av))*=ju(c3(F)) =—js (c1(£)3).

2.2.3) become as below :

(25) By (1.6.7) one has
ca(F)=—A-1(cl(F))
and by (1.9.2)
Ge Qv))4=—1* (. (1v)) =1
For any x € FFK(X) (i>0), since i*(x) € FFK(Y)=0 by (1.8) and (2.3.1),
() £ () =i (Y - (X)) =i (¥ - g*i* (%)) =0,

where y’ is any element of K(Y’).
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(2.6) In this case, Y’ is the three dimensional projective space, then ci(¢) is realized
by a general plane H'CY’ and (c1(£))? by a line L’CY’. Thus we consequently obtain the
following :

(2.6.1) for any i-cycle Z on X

Y ' (Z)=H - (Z)=L"-{(Z)=0;

(26.2) Y*=—-H, Y*=-Y -H=L’ and Y*=Y - L'=H?=-1.

Section 3. The case where the center is a curve

(3.0) This section treats the case that the center Y is a curve. Since dim Y=1,
(3.0.1) FZK(Y)=0
by Theorem (1.6.4) and hence
(30.2) c2(C)=cs(C)=(ar(C))*=0 in GK(Y).

On the other, because rkC =codimx Y=3 and rkC’=1, we have rk =2 thus
(3.0.3) c3(F)=0 in GK(Y’) by (1.7.1) and
(3.04) c2(F)=A-1(cl(F)) in GK(Y") by (1.6.7).

(3.1) Thus relations (2.1.1)-(2.1.3) are following :
(3.1.1) —al)=—g"(c(C)) +ta(l),
(312) —ci(€) ccai(F)=c2(F), and
(31.3) —ci1(€) » ca(F)=0.

(3.2) From (22.1)-(2.2.3) it follows that
(321 («(Iv))2=—ju(g*c1(C)) +js (a1 (F)),
(322) (G+(1v))3=—js (@ c1(C) » c1(F)) +jx(c2(F))=—ju (g5 c1(C) * c1(F)) +f*1 (1v), and
(32.3) (G+(1v))*=—ja(g*c1(C) » c2(F))=—f"1. (a1 (C))
by (3.0.2)-(3.04).

(3.3) For any x € FFK(X) (i>1), we have i* (x) € F'K(Y) =0 by (1.8) and (3.0.1), therefore
for any y’ € K(Y’)

e (y) T (X) =)y - (%)) =) (¥ - g'1F (%)) =0.
For any x € F'’K(X),

J (1)« £ (x) =j« 1y » g*1* (%)),

J»(C(F)) « " (x) =js (1 (F) - g"1"(x)), and

i« (g"(y) « £ (x) =j« (g" (y + 1" (x))) =0.
Here y is an element of K(Y) and y - i* (x) € F?K(Y)=0.
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(3.4) Put p=g*(1p) € K(Y’) for a point P on Y. It is obvious that p is the class of a
fiber plane H’ of the projective plane bundle g: Y'—Y. From (3.1.1)-(3.1.3) we have

3+ (P) < Jx(Iy) =jx(p * (—c1(£))) =jx (p * c1(F)),

3+ (P) s (c1(F) =ja(p * c2(F)) =ju(g* (1) * c2(F)) =f*ix (1),

Jx (C1(F)) * jo (Iy) =ju (c2(F)) =f*1x (1),

ix(Cc(F))?=jx(c1(F) » c2(F)) =jx ((—c1(£) +g*c1(C)) * c2(F)) =jx(g*c1(C) * c2(F))

=f*i.(c1(C)), and
J»(peci(F)) «jx(Ay) =ju(p * c2(F)) =f*i. (1p).

(3.5) The class —ci1(F) corresponds to some surface M’ in the exceptional divisor Y’,
~and —p-*ci(F) to aline ’=M’'NH’ in a plane H. Therefore we obtain the following :
(3.5.1) for any i-cycle Z on X
Y- (2)=(Z- -Y)H,
M- (Z)=(Z-Y)L,
H-(Z)=L-{*(Z2)=0;
(35.2) Y?=-—deg ci(C)H-M’,
Y?3=—deg ci(C)L +£*(Y),
Y*=—deg c1(C),
Y -H=-L,Y - M=—1(),
H -M=Y-:L'=-1 H?=0, and
M2=deg c1(C),
where deg ci(C)=—(Kx+Y)+2-2g(Y) by (1.10), and g(Y) is the genus of curve Y.

Section 4. The case where the center is a surface

(4.0) This section treats the case that the center Y is a surface. In this case, dim Y=
2, tkF'=1, and
(4.0.1) F3K(Y)=0
by Theorem (1.6.4), hence
(4.0.2) c3(C)=c2(C) *c1(C)=(c1(C))*=0 in GK(Y) ;
(4.03) c2(F)=0, —c1(F)=A-1(cl(F)) in GK(Y’) by (1.7.1) and (1.6.7).

(4.1) Relations (2.1.1)-(2.1.3) are rewritten as follows :
(411 —a@)=—-g*(c(C))+ca(F) and
(412) —c1(€) *ca(F)=—g*(c2(C)).

(From (2.1.3) we get only a trivial relation.)
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(4.2) From (2.2.1)-(2.2.3) it follows that
(42.1) G« (Qv))i=—ju (@ c1(C)) — " (x(1v)),
(4.2.2) (x (1v))*=ja (" (1 (C)2—c2(C))) +f* (ixc1(C)), and
(4.2.3) G Av))t=—1* (s (a1 (C)?—c2(C))).

(4.3) For any element y € K(Y), we obtain that
(4.3.1) jx (1) *jag® (M =jx (@ (y) « (—c1(£)))=—Ju (g" (y » c1(C))) —fix (1y)
and that _
(4.32) j+(1y) * Fris (¥) =ju (g (y) « A1 (F) = A1) =ju(g* (y - c2(C)))  in GK(X).
For any x € K(X),
(4.33) j«(1y) « £* () =j. ** ) =js (@*1*®))  in GK(X).
Furthermore
(4.34) (x(1v)) =1 (A1(C)) =ix(c2(C))  in GK(X).
(4.4) Let L’ be a general fiber of the projective line bundle g: Y'—Y. Then for any
cycle W on Y we may write
g" (W) =WXL’,
particularly, if W is a O-cycle (ie, it is interpreted as a number w) then
g" (W) =wL".

The class of L’ is equal to j«g*(p) where p is a point on Y.

(4.5) To conclude, we obtain the following :
(45.1) for any i-cycle Z on X
Y - f*(Z)=(Z-Y) XL, and
L - {*(Z)=0;
(4.5.2) Y?=—c1(C) XL~ (Y),
Y3=(c1(C)?—c2(C)) L =" (a1 (C)),
Yi=—(c(C)*—c2(C)),
Y e (WXL)=—(W-c(C))yL'—f* (W), and
Y -L'=-1
where c1(C)=—Kx|vy+Ky and c2(C)=(Y +Y) by (1.10) and (4.3.4).
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Appendix
(A.0) In this section we summarize results for combinatorial calculas. The symbol [J
is used the following sense :

[a]z _(a-zﬁw

b

if 0=b=g,

0 otherwise.

(A.1) It follows immediately that
L )+G)=C)

for any positive integers a and b.

(A.2) Lemma. For any three non-negative integers a, b and ¢, we have

5000000

PROOF. We use induction on a. If a=0 then the desired equality is trivial. We now

assume that

s(00.)-C)

for any non-negative integers p, q and r such that p<a. Then using (A.l1) we have

A0 TOW 1 | SR 0| O e N S O e G 2

(A.3) Lemma. For any non-negative integers a and for two non-negative integers b and

c such that c=b, we have

g (JG)=(0) ()

PROOF. We use induction on a. First assume a=1. If b=1 then

() =emen-co=[T]-c ().
and if b>1 then by (A.1)
GO-0E1=0-0 -0
because [lj =0 for b>1. Thus we prove the case a=1. Now assume that, for any p<a and

for any b and ¢ such that c2b=0,

g (JC)=-00)- ).
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Applying (A.1) for [a}, we have

g () -gen (T v Een ()
-2 (V)0)-E e (U))
c*(z*l)] (- 1) [a J [(c D—(a— I)J +(—1)b“1[:i]

This prove Lemma (A.3) in general case.

(A4) In formal power series ring Z[[t]], coefficients of the Taylor expansion

1=)

satisfy
i—1
aij— [)-IJ (12]21)
Indeed,
(t+t? 2+ )i=th« (1) 7
and
..__dk —$)"i=i(i — 1) o (1—¢)"i~k+1— G+k—D! — ) —i—k+1

thus we have

o1 47
W e

(1—t)7 (=D [H] . q.ed.

’t=O: G-NIG-—D! L

(A5) Lemma. For any element x € K(X)

=g (i
PROOF. Under the notation in (A.4), we can write
ri(x):glaml"(x)

for any x € K(X), because
A0 =5 7160 + t=Ava-u(0 = B (EHE+-) =1+ A Baut'=1+ J Raud i)

by the definition (1.6.1) of r. Using (A.4) we prove (A.5).

(A.6) Proof of the equality (1.6.6) :

) -0 =30 i),
=0

i—j
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We use induction on i. If i=0 then the equality is trivial. We may assume i>0. By the
property (1.6.2(b)) of 7,
AAEF) =2 AEE) -1« 740
hence

PHAE) —1) =7 () — T A F) =) + 775

-k ri—k-1
=3 [DJaam-gram-n- 3 Jro
= p=1 p—1
by Lemma (A.5). Since
P = f
=[],
it follows
i—k ri~k—-1 (i—k—1)+r i—k—1+r
pgl [ p—1 ]Ap(r) - [(i—k—l)+1] - [ i—k ]
by applying Lemma (A2) for (a, b, ¢, ) =(i—k—1, r, 1, p—1). Thus using the induction

hypothesis we have

Sram-o- 2 eo=8 e[ aaen (7))
=3 Zev= ()L e
-3 21( e [:_:][i_:ﬂpq(cl(ﬁ‘))
e X{ R B MM PRPRCTI 2
:qgo (" ] S I PRPUCT N
=2 ((L]- o] - asaay

by Lemma (A.3) for (r—q, i—q, i~q—1+r, k—q) insted of (a, b, ¢, i), where we set m=
min {i—1, r} considering
Ad(cl(F)) =
for q>r=rkF'. Therefore we have
) i rie i—k i—k—1
AAE) -0=3 [ JAEdE)-EreE -0 2 [ ]
1 (j-1 p=1 p—1

-& [ Jram-g )= [ aar

= Jr@m + Zenm [ a@r) o)

=3 (-0 [ aa)
in K(X). q.ed.
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