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Note on Stationariness of State Energies to Shifting
of Hartree-Fock Orbital Energies

Makoto Isihara
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It is succinctly shown that the state energy up to third order is stationary to simultaneous shifting
of all Hartree- Fock orbital energies by the same amount. Significance of the stationariness is
discussed in the context of the Hellmann-Feynman theorem; it is pointed out that orbital energies
still remain arbitrary, though relative distances between orbital energies are determinable from a

variational condition on the state energy up to third order.

Hartree-Fock (HF) orbitals have physically definite nature, based on the variation prin-
ciple.*? Of course, as is well known, the variation principle merely determines the occupied and
unoccupied orbital manifolds, leaving orbitals themselves arbitrary in each of the manifolds. This
orbital ambiguity is resolved with additional physical requirement or, in other words, utilized
profitably to the purpose’™® After such determination of HF orbitals we can still vary the
orbital energies, keeping the topological nature of the orbital unchanged."” This lingering
arbitrariness of orbital energies gets into shape, for example, in what is called the level-shifting
technique.”>® Now how does shifting of HF orbital energies affect perturbation-theoretical
state energies?

We work within the spin unrestricted picture, calling spin orbitals merely orbitals for brevity.
Occupied and unoccupied HF orbitals are labelled with the indices {j, £} and {a, b}, respectively,
whereas the indices {p, g, 7, s} are used for both. Let us denote the creation and annihilation
operators for the p-th HF orbital, respectively, by al and a,. Shifting the p-th HF orbital energy
by the amount 6,, we can write the second quantized electronic Hamiltonian in the HF orbital
representation as

H=K+V (1)
with
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KZ% (ept6,) alap (2)
and

%4 :—;Zv rabalasa,— prqapaq Eyjka*-ak—gyabalargﬁpalan (3)
where {e,} are HF orbital energies; {v#I} and {x,} stand for the electron repulsion and the
HF potential matrix elements, respectively. We do not specify {y;.} and { Yas}, the matrix
elements due to the orbital ambiguity resolution, but it is crucial that they have either both
occupied or both unoccupied double indices.'?

Now we invoke the Rayleigh-Schrodinger perturbation expansion.’® The unperturbed

Hamiltonian K has the HF state

\0>:I}a§[vacuum> (4)

as an eigenstate, which gives the unperturbed energy and the first order energy correction:

E=<0|K|0> (5)
E=<0|V|0> , (6)
By the virtue of Brillouin’s theorem the first order state correction contains only doubly excited
configurations;
[1> :%Ebcf,?afza'{,akaj 10> (7)
with
cIR=v%/ (&;+ ex—eo— €a+ 0;+ O— 0, — 6,). (8)

The second and third order energy corrections are expressed

in terms of [0> and |1) :

E=<1{V|0> (9)
E=4|VID—-Es (10
with
s =], 17
Let us use the notation E(n) to indicate the state energy up to n-th order;
E(n) :I%El. 12
Since
K=—2 v=d 13
ae,, ag, @ %
we immediately obtain
1 (p : occupied)
o Ey=——-Ei= , 19
96, o6, 0  (p :unoccupied).

Hence we have
ae,,E“):O (15
The state energy up to first order is stationary to any shifting of individual HF orbital energies.
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" This seems rather trivial, for the Hamiltonian itself is independent of {6,} (See eq. (7)) . We
can regard this stationariness, anyway, as a foundation of the level-shifting technique in the HF
theory.

On the other hand, it is readily found that the partial derivatives of |1> with respect to {6}
satisfy the relation

o
%agplD—O, (16)
which gives

o
%aHPS——O. (17

From eq. (19 we see

O s A _ _
%ang— %dpap— N, (19

N being the number-of-electron operator. Using egs. (14), (16), and (17), noting that |0> and|1> are

both eigenstates of N with the same eigenvalue and that they are mutually orthogonal, we easily

arrive at
2] o
Ep—a—a:Ez—§ angs— 0, 19
which results in
a
E»a—@,E (3)=0 @0)
because of eq. (15. Using the normalized state
[>=(0>+[1>)/(+ s)" @)

we can write the state energy up to third order with the normalization correction as'

EC3)=<y|H|¢>

=E+E+(E+E)/(+ s), @2)
for which also we have
2 1 _
%aﬁpE(S)—O 23)
by means of egs. (19, (7, and @). Now in the equation of differentials
dE(3)=3-2-E(3)d6, 2
L4 P
if we impose the condition
dg,=dé (all p) 25)
upon {dé,}, it follows immediately that
dE(3)=0. (26)

This stationariness of E (3) is leading implication of eq. (23) : The state energy up to third order
is stationary to the shifling of all HF orbital energies as a whole. The same holds for E@3). By
the way, calculating the right hand sides of egs. (9), (10), and (11) explicitly with egs. (3), (4), (7), and
(8), we can see that E,, E;, and s contain {6,} only in the form of 6+ 6.— 6, — 6.

Finally, it is significant and instructive to view the stationariness in the context of the

Helimann-Feynman theorem. Since |0 )is variationally optimized, the Hellmann-Feynman
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theorem is satisfied.'® Hence, eq. (15 is to result from

d a
ae,,E<1>_<0'<aa,,H>|0>‘ @
Contrastively we do not have
J = o
—a—apE(B)—<¢|(a—6pH)|¢> 28)
in general; regarding {6,} as variation parameters, we reasonably require the variational
condition'?
o =
aeoE<3)‘0’ 29

which necessarily means the fulfillment of eq. (28, the special Hellmann-Feynman theorem for
{6,}. What is asserted by eq. (23 is then that eq. (%9’s for all p’s are not independent of each other;
though relative distances between orbital energies are determinable, orbital energies still remain

arbitrary.
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