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The Hellmann-Feynman Theorem and Brillouin’s Theorem
| in the Hartree-Fock Approximation
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It is shown that the fulfillment of the Hellmann-Feynman theorem in the Hartree-Fock
approximation is an obvious consequence rather than a proposition to be proved through Brillouin’s
theorem. Moreover it is pointed out that, within the molecular orbital picture, the general fulfillment
of the Hellmann-Feynman theorem leads us naturally to the one-particle hypervirial theorem, which
is reducible to Brillouin’s theorem for the single configurational case and conditionally reducible to
the generalized Brillouin’s theorem for the multiconfigurational case.

So far quite a number of papers have been devoted to the “intimate” relation between the
Hellmann-Feynman theorem (HFT)?and Brillouin’s theorem (BT)3*®or to derivations of the
HFT under the Hartree-Fock (HF) approximation®'? Most of them are, of course, not
incorrect, but often include superfluous discussions as repeatedly pointed out by Epstein?!?
Suitably and sufficiently, he has emphasized the simplicity and generality of Hurley’s theorem'®
which does not seem to be widely appreciated. In this note, giving a transpicuous description
of the problem, we would like to clarify the situation for the HF approximation, which seems
more or less helpful in understanding the nature of the HFT and to have some pedagogical value.

Let us take the Hamiltonian H (¢) dependent on a real parameter ¢. The energy expectation

value E (o) for the approximate state ®(¢), which is not necessarily normalized, is given by

E (0)=<®(0)|H (0)|@(0))/<P(c)|®(0), (1)
from which we can immediately obtain
E=((@|H®>+<(|(H — E)|®>+<®|(H — E)|)) /<D|®>. (2)

Hereafter the dot is used to indicate the differentiation with respect to ¢ and the symbol (o), “a
function of ¢”, is often omitted for brevity. The fulfillment of the HFT for ¢
E=(®|H®>/{0|® (3)

is ascribed to the condition that
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(®|(H — E)|®>+(@|(H — E)|>=0. (4)
On the other hand, with the variation |¢®> we may put the variation principle into'®
(Q|(H —E)|0®>=0. (5)
Various variational approximations are characterized by specifying the space of the trial
function, or equivalently that of the variation. Thus, if |§®) runs over A |<i>> with an infinitesimal
number A, that is, if lié) is a possible |0®) in a variational approximation, then the HFT holds
under that approximation. This is an obvious consequence requiring no kind of derivations.
Epstein has neatly showed that when the set of trial functions is invariant to changes in o, }(i>>
is a possible |6®) and the HFT for o will be satisfied? Because this is in its essentials due to
Hurley!® it has been named Hurley’s theorem.
Now let us denote the creation and annihilation operators for the one-particle quantum state
&, respectively, by a};- and a,. Taking a complete set of one-particle quantum state {&}, we can
write the Hamiltonian which consists of one- and two-particle operators and depends paramet-

rically on o as

H(o)=3h, (ala, ++ = v¥%)alaba,a,. (6)
én T2 enty v
Here it should be noted that the o-dependence of the Hamiltonian comes only from that of the
matrix elements, {/,,} and {v57}. To let the Hamiltonian be hermitian we assume
that
and
v (o) =vG* (o). (8)

Introducing a relevant hermitian one-particle operator

X (o :gz’]x€”<a>a;a”, (9)
solving the eigenvalue problem

%(hgﬂ(o'>+x§7,<6>)u7;j<6>:ugj(o')ej (o), (10)

we obtain the molecular orbitals {j, 4,---} ; the Hamiltonian (6) can be written in the molecular
orbital representation as

H(o)=3; (a)a}(c)a,-(a)—_zkx,-kw)a}(a)ak(a)
J

+é—k§ v;{}’n<6>a}<6>a$(6>am(a>ak<a>, 1)
Jkim

where

a}(a)z%agugj(d), 12

xjk(O'):fu;j(o')xgﬂ(o‘)uﬂk(o‘), | 13
n
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and so on. Since {k;,} and {x,,} are hermitian, we can assume the unitarity of{u,;} ;
%u;}(a) Ug,(6)=3. (14
The single determinant state specified by a set L of the occupied orbitals
|L(u>>:nga§(a>|vacuum> 15
is an eigenstate of
K(o)=3¢ (e)al(e)a; (o). (16)
Because {aé} is independent of ¢, we have
Zz}:ga’;hﬁ, an

which is rewritten by means of the reverse transformation of eq. (12,

a2=§u;j<6>a}<6>, 18
as

Zz}=§c,-k<a>az<a> | 19
with

Cjk(o‘)zéitgju;k<o')- (20

Note that {§;} is antihermitian ;

(o) =—§}(0), )
as is easily seen from the unitarity of {u,}. Using eq. (19, we obtain

|i>=j%§jka£aj L. 22

First consider the single configurational case. The variation in eq.(5) for the HF ap-

proximation is to be constructed by varying {a},aj } as
t gt 1
a; — a;+21;a,
{ ] ] & hy/ (23)
a; — a; +%l,’-’}eak,
where an arbitrary infinitesimal matrix {2 ;} must be antihermitian to preserve the anticommu-

tation relations between the creation and annihilation operators. Immediately it follows that
|aq>>:jzk/1jka2a,-u;>, | (04)

whereas we know eq. (2 ;
1<i>>:]_zk§jka;a,.|L>. 25)

Obviously ll(i>> is a possible [0®) ; the fulfillment of the HFT is trivial rather than derived from

BT, a particular restatement completely equivalent to the variation principle with regard to the
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single configurational case®

Next consider the multiconfigurational case, where the trial function is a linear combination

of some |L)’s ;

}<I><a)>:§CL(6)!L<6)>. (6)
Since

3C.|6Ly=5C 34 yala;|L

LL'>Lij]kk;‘>

= jzkl PrOCAL )Y @

the variation in eq. (5) for the multiconfigurational HF approximation takes the form as

’6®>=%6CLIL>+j2kljkaZaj |D>. (08)
On the other hand, it is readily found that

t¢>>=§cL\L>+zk¢jka;aj |@>. (29

J
Hence 1 |(i>> is again a possible |0®) and again the fulfillment of the HFT is trivial. What is called
the generalized BT® is, by itself, not equivalent to the variational principle under the multi-
configurational approximation. It seems, however, unnecessary to invoke the generalized BT in
examining the fulfillment of the HFT in the multiconfigurational HF approximation.
As far as the HF approximation is concerned, it is very obvious or rather trivial for the HFT
to hold, as we see in the above. However, the story should be thought to be confined to the HF
limit}” for we assume the complete basis expansion at the beginning. The use of an incomplete
basis, which is practically almost the case, requires another consideration, of course!®
It is never futile to see what the condition (4) asserts in the molecular orbital picture. For the
single configurational case, we have
%Q;(Lla}ak (H—E>|L>+zk¢jk<L|<H—E>a;a]. |L>=0, 60)
Ji Ji

which is rewritten, by virtue of the antihermiticity of {§,}, compactly as
2CucLiH, ala; 1|L>=0. 6
Ji

Within the molecular orbital picture defined by egs. (9), (10), and (15, the “general” fulfillment of
the HFT leads us naturally to the one-particle hypervirial theorem ;*¥

(L|[H, a}a;]|L>=0 (any j, k), 62
which gives BT by deleting the trivially satisfied relations. For the multiconfigurational case, if

the Ritz variation method is assumed for determining the mixing coefficients { C }, that is, if
A%<L|H|M>CM:CLE, 33

then similarly to the single configurational case we obtain
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jzkgjk<q>1 [H, a}a; ]|@>=0. 64)

Moreover, if we can assume that {u,} are real, then {¢i} is a real antisymmetric matrix.

Therefore, instead of eq. 34), we have
Eijk@\[H, ala]- —a}ak“@):(). 5
7

Thus the “real” one-particle hypervirial theorem

(®|[H, a}a; —ala, |®>=0 36
is fundamental, but it is really rewritten as

Re(K®|H (a}a; —ala,)|®))=0. 6

The relevant reality restriction gives the generalized BT.
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