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On the Molecular Orbital Energy
in the Independent-Particle Model

Makoto Isihara
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Ambiguity in molecular orbital energies is analyzed perturbation-theoretically. It is pointed out
that the molecular orbital energy in the independent-particle model is to be adjusted through certain
variational condition.

Electronic Structures of Molecules are often well described in terms of the independent-
particle model (IPM). It is, however, not very clear how to determine the molecular orbital
energy (MOE) &, in the IPM Hamiltonian

Hpew=2¢:ata,,
where at and a; are, respectively, the creation and annihilation operators for the molecular
orbital (MO) /. One may think that the IPM Hamiltonian is merely a simple sum of the relevant
one-particle Hamiltonians used to determine MQ’s. But the thought is generally incorrect, unless
justified by the physical meaning of the one-particle Hamiltonian itself. It seems rather natural
to regard the IPM Hamiltonian as the “best” unperturbed Hamiltonian in the perturbation theory
for electron correlation.

On the other hand, in investigating the electron correlation problem from a perturba-
tion-theoretical point of view, the following has been noticed: Although the Hartree-Fock(HF)
wave function has a physically sound nature as the zeroth order wave function, the so-called HF
Hamiltonian is not necessarily a good unperturbed Hamiltonian'™®

In this note, analyzing ambiguity in MOE'’s perturbation-theoretically, we point out that the

MOE in the IPM is to be adjusted through certain variational condition.

Let the following second-quantized electronic Hamiltonian be a starting point.
. 1
H :pzq hpe@paqs+ Imzrs vhiaiarasag,
where we assume that

hpq: hq*p-
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vii=vih=—vl=—vi.
Whether the one-electron quantum states {» | form a complete set or not, we assume that the
space to be considered is defined by the above Hamiltonian.

We go to the MO representation almost always by introducing the HF potential into the

eigenvalue problem determining MO'’s:

;(hpq‘*‘ Upq) Cqj = Cpji€;
with

5pq:j§pv$’
where F stands for a set of the occupied orbital indices. The resulting expression of the
Hamiltonian is

Hz?‘,e}ajaj+71-ﬂ§m U im @@ A — 2 Usull} Qi

Since any unitary transformation within the occupied or unoccupied orbital manifold keeps

the Fermi sea state

| F> ZJIGIFaj | vacuum>
invariant, we can modify MO’s, for example, through an eigenvalue problem like'™®

kEEF(§jke}+yjk)uk,:ujle', (j eF),

where {y;«} are relevant hermitian matrix elements and F stands for a set of the unoccupied
orbital indices. The MO indices {Jj, k, »»+! are used for both the unmodified (old) and modified
(new) orbitals, which will bring about no confusion. The Hamiltonian is rewritten as

H=3&jaja;+ i_ﬂ%m Vi @ A, — 20y R Y@t

After such orbital modifications we still have a room for shifting MOE'’s;”

g;=¢g;+ 6,
MO’s being left unchanged apart from their energies. Thus the Hamiltonian is partitioned as
H=K+YV
with
K =§£,aja,-,
and
V:L 2 VA anay—Z0x@5ar— 2 Yirdiar— o » — 2 60;a5a;.
Sklm ik F J
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Regarding Hiem as the “best” K, we are to adjust the MOE’s in the above mentioned level-shifting

procedures~'?

It is not very obvious, however, how to determine the MOE shift. Here we propose one

possible way based on the quantum-mechanical variation principle, confining ourselves to the
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shifting for the canonical HF orbital energy for convenience’ sake.

Let | ¥ >Dbe a trial correlated state corresponding to | F>. To take the first order
perturbative state correction into account leads us to'"

| ¥>={I+C" | F>
with

Cr= —%ab%k viRERazatana;,
where

90— 1/(eqt+ep—Ex—&;).
Hereafter we use indices {j, & <++} and {a, b, <++} to label the occupied and unoccupied
orbitals, respectively, whereas only the index i is used unrestrictedly. Let us denote the exact
ground state energy of H by E and the expectation value in | F'> by the simple bracket. The

quantum-mechanical variation principle asserts that'*'?

E+E+(EB+E)/(I1+s)=E
with
E0+E1:<K+ V>
212(53_171‘1'/2%
E=<[C V]
—__1_ ab |2 b
T a%k | Ujk %,
E=<[[C V], CD
:-——i—ng v | (Gat6,—6.—6)) C?f’-{-%ab%ﬁk vV SEvREHEY
%abmm Ué'gvfrﬁvffgf’rgé'?f—abgm vEVISVEERETR,
and
s=<[C, C*D
——_1_ ab ab’
—L 3, lomires

Noting that F,+ E, is independent of {4,} , that is,
o .
W(EoJrEl):O (any 1),
we require the “best” {6;} to fulfil the necessary condition
3 ( E,+F; ) —0
o9; 1+s /
This gives inhomogeneous simultaneous equations of variation parameters {6;} , which are,

(any 7).

generally speaking, to be solved only numerically, say, with the Newton-Raphson method. The
necessary quantities in the numerical solution are the derivatives of E,+ F; and s with respect to
{6;} , which have the following expression:

%<EZ+E3>:—G§J" vim P (Gt 6b~t9m—6j)§f,33
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as _ 2 ad

26, — 2 | v | .

Note that the quantities dependent on {6;} are only {&%¢} besides {8;} in the above derivatives.
Simplifications by reducing the number of the variation parameters may be worth being
investigated. One is to set
6,=6 (any jeF)
{ﬁazﬁ' (any a € B,
which is actually one-parametric; the “distance” between the occupied and unoccupied spaces is
arranged as a whole. Another is to use 6,’s only for specific orbitals, say, the highest occupied,
the lowest unoccupied, and so on; the number of the variation parameters ranges from one to
several. For example,
6 (the highest occupied)
6;=1 6 (the lowest unoccupied)
0 otherwise .
Unfortunately, we cannot give any conclusive remark as to how the above mentioned
methods work before numerical investigatory calculations on leading actual systems, which is

another enormous story.
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