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The Electron-Hole Potential Method
Viewed from Hypervirial Theorems
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INTRODUCTION

The evaluation of excitation energies by the closed-shell Hartree-Fock (HF) method® is to
be improved in the electron-hole potential (EHP) method,? as far as only one specific excitation
is concerned. The original derivation of the EHP method consists of constructing the new
occupied and unoccupied orbitals from the occupied and unoccupied HF orbitals, respectively,
through the minimization of the single-electron excitation energy in question. In this paper
hypervirial theorems are introduced in the second quantized form and utilized to derive the EHP
method. The derivation is not only simple but instructive in understanding a nature of the
method. Brillouin’s and the extended Brillouin’s theorems'® are shown to be contained in
hypervirial theorems and a possibility of going beyond the EHP method is suggested within the
scope of succinct methods. Supplementary remarks are added in the perturbation-theoretical

context.
HYPERVIRIAL THEOREMS

Let | > be an eigenstate of a Hamiltonian H and W be an arbitrary operator. The
hypervirial theorem® affirms that
<y |[H W]l¢>=0, (1)
the restriction on W being only that W | ¢ > should not be pathological. The theorem is nothing
other than the statement that the expectation value of W for stationary states is independent of

time, and has vast range of utilization because of its fundamentality. The essential explorations
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of the theorem in molecular quantum mechanics have been made already in 1960’s from both
variation- and perturbation-theoretical points of view,”® where the form of W is either non-
-specified or given as a function of coordinates and momenta. Using the field-theoretical
language, we can see an interesting simple aspect of hypervirial theorems. Let us take a system
of identical particles and denote the creation and annihilation operators for the one-particle
quantum state 7 by «? and g, respectively. Then, an arbitrary one-particle operator of the system
can be written as

%4 :]_Eh W;n@s .
The severe requirement that (1) must hold for any W leads us to the one-particle hypervirial
theorem:

Y | [H, apag] | =0 (any p, @). (2)
Likewise we have the two-particle hypervirial theorem,

¢ | [Hasazasag] | ¢>=0 (any p, q, 7, s),
and so on. For any product of the creation and/or annihilation operators we have

< | [Hla3lla;) | ¥>=10.
However, unless the numbers of the creation and annihilation operators are equal, the relation is
trivial for the particle-conserving Hamiltonian.

Separating a Hamiltonian into the unperturbed Hamiltonian K and the perturbation 1 V with

a real parameter A:

H=K+21V, (3)
we can obtain a perturbation expansion of (1) on the assumption that an eigenstate | ¥>of H is
attainable from the corresponding eigenstate | ¢ >of K thorough a unitary transformation:

| ¥>=exp(S) | ¢ >, (4)
where S is an antihermitian operator independent of the energy level index. Noting that S has
no zeroth order term, we put it in the power series of 1 as

S=AS,+ A28+ (5)
with antihermitian operators {S;} . Substitution of (4) into (1) rewrites the hypervirial theorem
as a form of the unperturbed state expectation value:

(¢ |exp(=S)[K+1V, Wlexp(S) | ¢>=0,
which is expanded by means of (5) to give

Alg [ [V, WIH[IK W], S| ¢>

+Axe | [[V, W], SzH%[[[K, W1, S, SI+I[K W], S] | ¢>+--=0.
Thus we have the first order hypervirial theorem,

LV, WIHIIK W], S]lé>=0, (6)

and so on.
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To decompose S; into the one-body part S/, the two-body S5, and so on,

S=SY 4S9+, (7)
enables us to proceed a little further. Assuming that K is diagonal and that V consists of the one-
and two-body parts;

V=V"r+Vve (8)
we obtain the first order one-body hypervirial theorem as

< | [V, aba) +([K, atas], ST1 | &>

+<¢ | [V, atal) +[[K, ata), ST [ ¢>=0  (any p, @, (9)

where the first and second terms in the left-hand side, respectively, concern the one- and two-body

operators. We can make all S vanish for » larger than 2.

THE HARTREE-FOCK METHOD

The Hamiltonian of electrons in the fixed nuclear framework is given by
H=% he,a5.a,, +%€v§:€y1)§§a;agawaw, 10
where the seco;d suffices, . a;V(i v, refer to the electron spin. Taking a relevant hermitian
one-electron operator
X:;”x&? A5,
which is to be gletermined later, going through the expression
H = 5 (hoyt26,) 0800, +5,5, 055050600000 = 3 o0
we rewrite (1/(‘)) in the molecular orbit::lu representation as :
H = ? €554, +%j,§mvﬁﬁqa_;aﬁamvakﬂ— Jzk XjnQp Ay - 1
The molecular o;bital coefficien;; {u#s,; and their ene;gies {e;} are determined by the eigenvalue
problem diagonalizing {#%,,+x,,} :
2 (hgytXg) Uy =Ugge ;- (12
Now let us take the unperturbed Hamiltonian in (1) as
K = ? €;a;,a,,
and assume that#its ground state | F> have a doubly occupied form:
| Fy=as%a/y as' asiahar | 05,

where 1 and | stand for the up- and down-spin states, respectively, and | 0 dmeans the vacuum

state. Hereafter we denote a set of the occupied orbitals {1, 2, ------ , f} by F and that of the
unoccupied by F. Substituting
V=~ ,% XA, 13
ve=Lls y2atatana,, (14
2 jkim ke w

uv
SP= J_Ek Sk @ Ay (15
u
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and

2 Jl
5(7):i 2 S /u’m a_]}l a 71/ [ al\p (]6)
Jkim

into (9), we obtain ﬁ;e first order one-body hypervirial theorem. There a}a, in (9) has only to be
replaced by «a,,a,,, since (1) includes no spin-changing term. For the ground state, putting | ¢>=
| >, we see the theorem result in the following condition.

—Xgp+ Ugpt (&g €p) (Sqpt+Sgp) = 0 (any j)eF, gel), {17
the quantity with tilde being defined as

fop= 3 (2E—15).
Although for any peF and geF the same equation is obtained as for any peF and geF, they are
not independent of each other as far as X and V are kept hermitian and S antihermitian. If we
use no S, that is, take an approximation that | ¥>= | ¢, then (7 gives

Xap= Tgp (anypeF, gqeF and vice versa), (18
which just means to take the HF potential. Note that x;,’s for p, geF and p, geF are not
conditioned here, the HF ambiguity being implied. Setting x,=#, for all p and g, we have

Xey= 3 Qui—vi), 19

JEF
which gives the usual HF equation, substituted into (12).
Denoting the singlet and triplet excited states of K by

| vwi>:%—((zvﬁ Qerta, | ae) F> (veF, weF), 20)

where + and — stand for the singlet and triplet states respectively, we have
CF | H | vws>=1(F | [H aan] | F)xCF | H alan]) | F),
since {F | a,, vanishes. Thus Brillouin’s theorem is contained in hypervirial theorems. By the
way let us refer to the simple variation problem.” In the condition for the trial state function | &),
EITH|8>=0,
to take (F | as <¢| and xa ,t, a, | F> (peF, geF) with an infinitesimal x as | §¢) immediately
gives
(F | Hajba,, | F>=0 (any peF, geF),

which is again arranged in the form of the hypervirial theorem without S.
THE ELECTRON-HOLE POTENTIAL METHOD

The first order one-body hypervirial theorems for the singlet and triplet excited states are
obtained by putting | ¢>= | vw + ) after substitution of (13, (14), (15, and (16) into (9). They lead us
to the following rather lengthy conditions.

— Xppt Dop— Vit Vo vipt+ (ev—p) (SoptSop—Sh+S0ptsie) =0,  (la)

_xqw+ﬁqw+vu%—vszui<—vz?g)>+(&)"Ew)(5qw+§qw+szzlz);_sz?:;i<_sz%}))>: 0, @2lb)
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— Xwpt Dupt VE— 0+ 0%+ (ew—&p) (Swpt Swp+ Spr—She+s¥D|= 0, @lc)
Xt U+ v — vt (—v i) +(eq—&0) (Sqpt+ S+ s —Sdut (—sdp)) =0, (21d)
— Xapt Dap+ V() gp— (W) gpF (eq— ) (Sapt Sap+ S(0) ap— S(w) ) = 0, @le)
for any peF other than v and any geF other than w, and
vy — vt (i — o) +(ew—e) (SE—sTuE(ST—Sstw)) = 0. @1f)

The quantity with single dot in (le) is defined as
i) =t —L 13,

2
Let us consider the single-determinant approximation, the case without S. If we take the HF

potential (19, @1)’s are reduced to

—vtoStoiE=0, (22a)
Vo — Vit (—vf) =10, (@2b)
v — v+ =0, @2c)
vir— vt (—vdH=0, (22d)
V(0 gp— (W) p= 0, (2e)

for any peF other than v and any geF other than w, and

vor— Vot (Vi —vw) = 0, @2f)
which cannot hold in general, and we see the violation of the hypervirial theorem by the HF
method. Here note that the orbital symmetry tends to lessen the violation.

It enables us to make (21a) and (@1b) without S terms hold that the hypervirial theorem for
the ground state imposes no condition upon x,’s for p, geF and p, geF, (18 remaining satisfied.
Take

Xep=Dp— v+ 0I5+ v 3% (p, geF) (@3a)
and

Xap=Vgp+ v —v P+ (—0vID (p, qeF). @23b)
Then, @la) and @QIb) without S terms clearly hold and the violation occurs in the same forms as
22c), @2d), (@2e) ,and @2f). There again note that the orbital symmetry often favors to lessen
the violation. If the HForbitals {u‘g} and their energies {e?F} are already known by solving (12)

with (19, we have only to work out a set of eigenvalue problems that

EF( Ome ST +y(wt) ) cop=cpap  (jeF) (4a)
with

Y(WE) p=— v+ Vot vy
and

Z(0ue]" +2(v ) ) dep=diplp  (JeF) (4b)
with

Ju Ju j
2(vE) =V — Vart (—V3p),



86 £ 5 =

which is just the original form of the basic equations of the EHP method.”” Because {y(w+),.}
depend on w, an occupied orbital, and {z(v+),,} on v, an unoccupied one, to solve 24’s includes
self-consistency procedure. Consequently, of course, {¢;»; , {d;pt, {apt,and {8,/ are dependent
on all of », w, and the multiplicity +.

Noting that the hypervirial theorems for the excited states without S,

Cow+ | [H, afy ags] | vw+>= 0, 25
hold for any p, geF or p, geF under the EHP choice of X, (23’s, we can prove the extended
Brillouin’s theorem in the EHP method,

ow+ | H | vw+>=0 (v+0") (2 a)
and

vw+ | H | ow'+>= 0 (w+w”, @26b)
to be contained in hypervirial theorems as follows. Putting

Lu<i>:712:< St 0,10,
we arrange the left-hand side of (6a) as

Cow | H [ vwt>=3 L, (£)vw | Ha’y, 6,000 | F

=3 L, () ow= | Ha®, (aga’, +a%, an)aw | F>
=3 ow | Ha'lpa,, | vws>
=3 (owx | [H, at,a,] | vwt>,
where the terms under the summation of the last line are independent of x, so the condition that
ow+ | [H o abpa,] | vwt>=10,
which is assured by 25, is equivalent to (%6a). We have a similar argument for @b) .

It can be said that the EHP method is better to satisfy hypervirial theorems than the HF
method.

BEYOND THE ELECTRON-HOLE POTENTIAL METHOD

Let us give a perturbation expansion to the excitation energy as preliminaries. Define the

excitation energy AE(/—]) from the state | y,> to | ¥,> as
AEU=]) = | H | Y=<y, | H | 4,

which is converted with (3), (4), and (5) into

AEU=)=K—=K+1 g, | V[ ¢p+<d, | V| ¢

+220<4 L[V, ST+ (K S,) ST 1 =< | [V, SI+EILK S0, S| é+, 1)

where | ¢,> and | ¢, are, respectively, the eigenstates with the eigenvalues K, and K, of K. If
the first order hypervirial theorem (6) is satisfied, the second order term in the right-hand side
becomes simpler, and the expression is reduced to

AEUI=D=K,—K+1(¢, | V| dp—</ | V| >
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+ 2, 11V, S18p—<, | LV, SI1 | ) 4o
To first order the excitation energy is independent of S. Any of the HF and EHP methods
calculates @7 to first order with | ¢p= | F)> and | ¢,>= | vw+>.

Now consider to satisfy the ground and excited states hypervirial theorems by including S as
simple as possible. Each term in the left-hand side of @2¢), @2d), (2e) , and @2f) has one of
the following forms: v®, v®, v, and v (peF, geF). This suggests that the first-order
one-body hypervirial theorems for the excited states as well as the ground state are completely

satisfied in the EHP choice of X by using S of the matrix elements:

sgg: - Vgg/<€q—5p>,

si=—0v5/(ea—ep), pef, qeF
qw w ( and )

sgw=—viy/(eq—&p), vice versa

shp=—v5s/(eq—ep),

Sap=( 208 —v3) /(eq—eyp),

and
Sgr=5Sep=10 otherwise,

which gives the second order correction in @7) for | ¢¥,>= | F> and | ¥>= | vw+) as

with aet
ACow £) gp= 2 D(wW) op(vE — D (w) gp) + 2 D(0) o0 5 — D (v) gp)
—2v@vH—2vo+2(1 £ Dvivds,
Blow+),=vi +0vgd—2 (1 Dofvs
and
Clow+),=v +v%—2(1 £ Do,
where

D(rep=vi—vH
and all the orbitals are assumed to be real for brevity. Only p and ¢ of the same symmetry, ¢
of the same symmetry as v, and p of the same symmetry as w should be taken into account,
respectively in the first, second, and third summations in (8. Before we discuss the effect of this
correction, a considerable amount of trial numerical calculation is to be performed, and we would
like to think the above recipe as a possibility at present. Other various methods are expected to
be devised.

SUPPLEMENTARY REMARKS

It is never futile to add supplementary remarks in the perturbation-theoretical context®
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Under the unitary transformation prescription, (4), perturbation equations in the operator form
are derived from the condition that

[exp(—S)Hexp(S), K]=0.
Making use of (3) and (5), we obtain the first order perturbation equation

[V+IK, S/], K]=0 29
the second order one

[V, SI+4[[K S, SI+[K S.).K]=0,
and so on. Now we confine ourselves to 9. Substitution of (7) together with (15 and (1) and that
of (8) together with (13) and (14) into 29 lead us to the two separated equations corresponding to the

one- and two-body parts:

%(5&(61"‘“&) ~x5) (&;—€x) a.,;d/w =0

7

and

2 (slzjﬁn<£j+€l—6m—£k>+U}é’}n)(Ej+el_em_£k>a,;;a;tamua/w: O »

Jkbn

which are Tead as

Six= Xn /(&;—€x) (7, k such that e;#¢&,) (30)
and

Sin=—Vin/(&;+e—emn—&p) (J, kI, m such that e;+e,—en—ex# 0). )
The matrix elements of S, other than (30) and G1) can be set to vanish by imposing such auxiliary
restriction upon S as the complete off-diagonality in the representation of { | ¢> ¥ Clearly,

to take @0 and 1) makes (17 and @1)’s hold; the first order hypervirial theorem is satisfied.
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