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Towards an Improvement of McLachlan’s Method
for Spin Density Calculation
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INTRODUCTION

The hyperfine splitting constant from a proton in a pi-electron radical is connected with
the spin density on the carbon atom to which the proton is attached through the following
simple relation”:

a=Qp,
where a and p stand for the proton hyperfine splitting constant and the spin density on
the carbon atom, respectively, ® being the semi-empirical constant about —23 Gs. It may
be said that this proportionality has made spin densities be touchstone of methods of electron-
ic structure calculation. Above all the unrestricted Hartree-Fock(UHF) methodz) is worthy
of special mention in the sense that it explains the phenomenon of negative spin densities
compactly with the concept of the exchange polarization, putting on one side whether the
concept is physical or merely formal. The UHEF wave function is not an eigenfunction of
S% S being the total spin operator, so that the projection after or before the UHI self-
consistent procedure is essential in advanced calculations.g) Those and the other elaborate
methods, say the configuration interaction method,4) have their own significance and with-
out any doubt play a principal role in the development of spin density calculation. We can

. R . 5) . .
not, however, despise the existence of concise methods, as McLachlan’s one,” which give
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occasionally better results than what is called rigorous, advanced methods, and are valuable
in insight into a nature of the problems concerned with spin densities. Although McLachlan’s
method in its original form sometimes works surprisingly well, it seems still to be improved.
Some modifications have been attempted: Nowakowski showed a few neat modifications,s)
but his recommended scheme involving the self-consistent Hiickel method should be said to
be already outside the scope of “modification” in a sense. Honeybourne’s careful considera-
tion led us to a correction term, = *”’, while he gave a topological approach,S) which is
interesting in understanding characteristics of spin densities. Devolder alsc reached an
expression containing i However, his discussion on the improvement of spin density
calculation for odd alternant hydrocarbon radicals is incorrect as pointed out by Honey-

[

bourne.”

We think it presumably fruitful to examine the various groupings obtained from different
perturbation expansions in order to find an improvement of McLachlan’s method. Here it
is worth while to mention that the improved method should neither require much more
complicated computation than thé Hiickel one nor involve the self-consistent procedure.
In this note, introducing Green’s functions in the relevant form to the spin density calcula-
tion of pi-electron radicals, we seek for the possibility of improving McLachlan’s method
through the Feynman-Dyson perturbation expansion. So far attaining no conclusive stage,

we would like to regard the prospect obtained there as an encouragement for further works.

HAMILTONIAN AND HUCKEL ORBITALS

Let us make a start with writing the Hamiltonian for the system of pi-electrons in the

fixed nuclear framework in the second quantized form:

H:Z Tretsoaqot z Visabsareascaqs, (1)
pqo pqrs
ot
where abs and aps are, respectively, the creation and annihilation operators for the
one-electron quantum state po which should be labelled by “atomic” index p and the spin
state 0. In diagonalizing the one-electron operator term the following eigenvalue equation

is to be solved.
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Z TrqCiq =€iCip,
q
which gives the Hiickel orbital energies {e;} and coefficients {¢,,} - We can assume that all

coefficients {¢;,} are real. It is not essential here to impose the familiar conditions on

{Tyq} as
a independent of p for p=g¢
Tora=1Brq for p and ¢ in the first neighbor
0 otherwise ,

10)
though necessary in order to make a few elegant theorems for alternant hydrocarbons hold.

Denoting the creation and annihilation operators of the o-spin electron in the Hiickel

orbital j, respectively, by bis and b;s , we can rewrite (1) as
H=H,+H’
with the unperturbed Hamiltonian
Ho:Zejbfabja (2)
55
and the perturbation

HI:'%_ Vfcin ;o‘b?rbmrb/co"

J m

L
T

Qs

In the rest of this section let us consider a little on the ground state of (2). Starting
from m atomic one-electron quantum states, we can construct m Hickel orbitals. Name the
orbitals 1, 2, - m, in the increasing order of the orbital energy. If mis odd, we have
the neutral radical in which the (m+1)/2-th orbital is singly occupied and the lower doubly.
For even m the anion and cation radicals are obtained of which singly occupied orbitals are,
reépeetively, located at m/2+1 and m/2. Note that we can treat the anion and cation

radicals from a unified point of view, when the change of the nuclear framework is negligible.

SPIN DENSITIES AND GREEN’S FUNCTIONS

Formally speaking, the spin density on an atom p, p,, is defined as a diagonal element
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in the atomic representation of the spin density operator.” We can, however, give a very
compact expression to that quantity in the field-theoretic language within the scope of our

present discussion;
pr={0lapr apt —ap| apy 10>
where the up- and down-spin states are denoted by 4 anb |, respctively, [0> standing

for the ground state of H. Suppose the doublet radicals of which z component of the spin is

#/2 hereafter. The above equation is ready to take a different form

pFZMIbZ 1h; 1— bt 165 0> crpcip (3)
ik

by the transformation that

d};d: Z b}Ldep
J

aPo‘:zbjo’ij.
J

On the other hand, Green’s functions are defined as

ghi(t—1t")=—i<0|T bys(t)bis(t)|0>/<00>, (4)

where T is Wick’s chronological operator and the operators of time arguments are in the
Heisenberg picture. Letting ¢—¢' tend to zero keeping {—t < (@, we obtain from (4) with

an infinitesimal positive number, 6,

blsbisl 0D,

which immediately converts (3) into

Pp=—1 Z{ngA« (=8)—gh (=8)}circCin. (5)

ik



139
2505 VDAY VEEHNERORBEDELT

Obeying the convention to write the Fourier transformation as
G/f(w):fd(t—t')e"w(t*t,)gfk(l‘—l")
, 1 —tw(t—t’
gt —t)=5 [doe U165 (w),
we have
'OPZE_——Z dwe’w" (Gl (@)= GH(w)}crpcin
in place of (5). Thus the spin density is calculated from the knowledge of Green’s functions.

It is useful to introduce the matrix notation here. To put G°=(G%(w) )and Cp=(cipCip)

results in the expression containing the trace:

Lo T {GT—G Y)Cp) . (7)

We can define the unperturbed Green’s functions, {g%(¢#—¢’)} , and their Fourier trans-
forms, { D% (w)}, likewise in (4) and (6), using the unperturbed ground state and the interac-
tion picture instead of 0> and the Heisenberg picture. But in the unperturbed case the

Green’s functions for j#4% vanish. Accordingly we have the diagonal matrix

D’=(Dj(w))=(8;sD¥(w))
with
{ D! (w)=(w—w;+ifn9(j—f))?

D} (o)=(0—w;+i9(j—f+1))"

where f means the singly occupied orbital in the unperturbed ground state, w;=¢;/#%, and
7 is the integral variable function of the property that

1 for z2>0
Wz)=
—1 for z<0.
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Note that the unperturbed Green’s functions are “known” functions. The problem is how to

expand the Green’s function in terms of the unperturbed.

PERTURBATION EXPANSION

Assuming that |0> is attainable from the unperturbed ground state through the Gell-
1 : . ) . .

Mann-Low theorem = and noting that the Hamiltonian (1) includes no spin-changing term,

we have a set of the algebraic equations separated “in appearance” by the spin index in the

frequency - dependent form with the Feynman-Dyson perturbation theory:

{GT =pr +DT 8T G? (8a)
G' =D' +D' St Gl (8b)

where §7 stands for the proper self-energy part, which really cotains both Dt andDi I
the self-consistent procedure as replacingS9(D! , D¥ )by S%(G', G!) is performed, (8a) and
(8b) intertwine. The first order terms of 8% come from the coulomb and exchange interac-
tions and are certainly dominant. It is an interesting problem whether or not the terms play-
ing a special role in the spin density calculation exist. This is, however, not investigated

here. Taking only the first order self-energy part into account, we have

S=1
Sk =) vt~ vt/ T+ (ol — i)/ (9)
[:

1

i1
SH =Y (evh—vi) o 7. (9b)
/=

o

The infinite series perturbation expansions (8a) and (8b) together with (9a) and (9b) are
expected to give a result competing with that of the configuration interaction method. Tt is,

however, not so transparent to solve
Go‘.__(Do'~1__S()')~l

that we invoke the aid of the transformation analogous to that of the two positional coordi-

nates into the relative and center of mass ones:
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{AGZGT -Gt (10a)
G=(G" +G')/2, (10b)

which simplifies (7) a little giving
pr=5 [dwei®0Tr(4GC,). (11)

For the unperturbed Green’s functions and the self-energy parts likewise we set

{AD:DT —-D!) (12a)
ID=(D" +D¥)/2 | (12b)
and
{AS=ST —s! . (13a)
S=(ST +st)/2 . (13b)
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The substitution of the reverse transformations of (10), (12), and (13) into the difference

between and half the sum of (8a) and (8b) results in

{AG=AD+(DAS+ADS)G+(DS+ADAS/4)AG (14a)
G=D+(DS+4D4S/4)G+(D4S+ 4DS)4G/4, (14b)

which is, of course, completely equivalent to (8) in content, and this time 4G and G explic-

itly twine together in the infinite perturbation series.

Now let us consider the reduction of a system of equations (14) to the simpler approxi-

mate one, examining the terms appearing in the right hand sides of (14a) and (14b) through

the replacement of 4G and G by their zeroth order terms, 4D and D. Since the terms

containing 4D doubly are vanishing in the integration for the frequency, 4D4S4G/4 in

(14a) and 4DS4G/4 in (14b) are the first to be dropped. By the inference, not so reliable

as the above, we further omit DA4S4G/4 and 4D4SG/4 in (14b): DS looks main in
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(DS+4D4S/4) from a formal aspect. The term led by 4D4S/4 in (14a) being already
dead, it seems well-proportioned to replace (DS+4D4S/4) by mere DS in (14h).D4S4G/4

should throw in its lot with 4D4SG/4 , being as strong as it. Consequently we obtain

JAG:AD+(DAS+ADS)G+DSAG (15a)
l G=D+DSG . (15h)

where no intertwinement of G and 4G occurs, though G can affect 4G. This system of
equations makes an approximation scheme possible for the general S: Determine G with
(15b), substitute it into {15a) to obtain 4G, and calculate the spin density from (11). This
involves the infinite series summation, in other words, the calculation of inverse matrices,

and leaps outside our present purpose. We believe that (15) can be confirmed more rigorous-

ly.

TOWARDS AN IMPROVEMENT OF McLACHLAN’S METHOD

In this section, considering a few approximation schemes to which (15) is reduced, we
attempt to improve MclLachlan’s method.
The simple Hiickel result is given as the roughest approximation by neglecting all the

terms expect for 4D in the right hand side of (15a):

fAG:AD

1 G: not concerned,
which leads us to the well-known expression
Pp=Chp.
If we take D4SG in addition to 4D in (15a) and ignore DSG in (15b);

{AG:AD+ D 4SG (16a)
G=D , (16b)

E = - . 12) . E .
then under the Pariser-Parr-Pople approximation  (11) straightforwardly gives
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1 1 .
Ppr= C;p—"z_z (ﬂ'p,r'Jr‘ ”Z,r)CJZ‘r 7rr—‘2_2( Tprst ”;,rs)CfrCf&'yrSy
r (rs)
where (rs) stands for the » - s bond, 7r» and 7rs being the semi-empirical interelectronic
repulsion integrals. Note that the atom-atom and atom-bond polarizabilities here are defin-

ed as follows.”

m
14
Thr=2 2 CrpCinCrrCir] (65— €5),

m
Tprs=4 chpckp(cjrck5+CerjS)/(ej"‘ek),

Jj=1 k=f

and

m
Thrs=2 Z CroCip CrrCis+ CirCrs) [(€r—€5),
Jj=1

where the prime on the sigma indicates the exclusion of the fth term in the summation.
Honeybourneg) is probably the first to refer to the expression like (17). Let us denpte Bmp,r
by #p,r for a unified A. Taking only the terms led by {7pr} into account and replacing

— ¥++/26 by a semi-empirical parameter independent of r, A, we arrive at the original form

of McLachlan’s method”’:

Pp:C;p“‘}‘/lz ﬁp,rC%r. <18)

For odd alternant neutral radicals, since {mp,rs+ 7h.rs} and {x},} are identically zero, (17)
becomes (18) without any approximation. If {#},} and {x},s} are small enough, we reach
(18) approximately for even alternant anion radicals, where {r,,s} vanish. Our present

definitions of the atom-atom and atom-bond polarizabilities seem to hinder us from giving
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such expressions as (18) to.cation radicals. Dropping the atom-bond terms in (17), we have
POp—= C}p“‘i‘ A Z( 77'[:,1”‘?“ ;r;ﬂ;,r) Cjz‘r,
e

which is essentially the same derived by Honeyboumem} and Dovolder’ as modifications of
MclLachlan’s method for neutral radicals. Naturally, this formula is valuable for the radicals
of influential #3,, for example, non-alternant and heteroatomic radicals.

How to go beyond (17) is not very obvious. A few approximation schemes may be possi-
ble between (15) and (16). For example, adding 4DSG and DS4G to the right hand side
of (16a), we obtain

4G=4D+(D4S+ 4DS)G +DS4G (19a)
G=D , (19b)
which includes the infinite series only for 4G. If we take DSG into account, then a system
of equations consisting of the finite series for 4G and the infinite for G,
{AG:ADwLDASG (20a)
G=D+DSG , (20b)
is obtained in place of (16). Each of (19) and (20) involves the calculation of an inverse
matrix, and cannot be a concise method in itself. It will be, of course, suggestive to examine
how (19) and (20) work by the practice of calculation and computation, but that seems con-
siderably laborious. Here we like only to look into 4DSP and DS4D. These two terms

multiplied by C, give the same trace, which takes the following form after the frequency

integration under the Pariser-Parr-Pople approximation.

fdwelweTr(ADSDCp) :é“Zﬂ';,rQr yrr"*‘zﬂ'z,rQS Yrs __fz‘“zﬂ':,rsprs Yrs, (21)

(rs) (rs)

where ¢, is the charge density on the atom r and prs is the bond order of the - s bond;
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S-1

Qr:ZZCLZr+C12‘r
=1

and

F—1
prs :22C17CL3 +CrrCrs.

=1
The replacement of * 4G in the right hand side” by 4D in (19a) brings us to the following

finite expansion, though rather ill-sorted.

{AG:AD+(DAS+ADS)G+DSAD (22a)
G=D ' : (22b)

This makes twice (21) be the additional terms to (17), and we can see, to some extent, the
influence of the terms contained in (21) on the spin density. Tentative calculation is now in
progress on this line, so we would like to put an end to this note by adding some remarks:
The first summed term in the right hand side of (21) is half as large as the terms led by
{x%,}in the right hand side of (17) in the absolute value and they tend to cancel with each
other. This situation certainly favors (18). The second summed term is often comparatively
large and does not seem to match with the finite expansion (22). Twice the last is likely to
be the first correction term to (18) for odd alternant neutral radicals in which, as already
mentioned, { 7% ,} and {7y rs+ 75,5} identically vanish. The contribution from the atom-bond

terms is, in general, not negligible. Received October 10, 1979
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