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A Evaluation of Excitation Energies

of Doublet Radicals
from One-Particle Green’s Functions

Makoto lIsihara
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INTRODUCTION

For the system of electrons in the fixed nuclear framework we may put the
Hamiltonian as
= Ta +L3 0"t ot
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where aZ and ¢  are, respectively, the creation and annihilation operators for the
4 o

one-electron quantum state pe, ¢ standing for the spin. By going to a relevant basis,
for example the Hartree-Fock(HF) one, (1) is rewritten as the sum of the unperturbed

Hamiltonian

H,= te
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and the perturbation
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Then, it is almost exclusively useful to define the one-particle Green’s function in the

frequency-dependent matrix form as

G(e) = {G. (&)} 2)
7k

with

G == [T dupy Mo 1To, (118110 1IN, O

where T is Wick’s time-ordering operator, |No)> stands for the N-electron ground state

of H and
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Denoting the N-electron n-th eigenstate of H and its eigenvalue by | Nn > and E,iv ,

respectively, and expanding (3) as

(Nolb IN+In>{N+1In lea INo>
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we see that G(e) is divergent at the following frequenciesl)'

1

N

em=E, —E)—in (4)
and

N _
c=E —E  +i (5)
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with a positive infinitesimal A . On the other hand, G(e) is ready to be expressed in

terms of the unperturbed one-particle Green's function, G°(e), and the proper self-

energy part, S(e), as

1

G(e)=1G" () '—S(e)} .

so that we can obtain the poles of G(e) directly from
1G° () '=S(e) | =00 (6)

The concrete definitions of G°(e) and S(e) are obvious from that of G(e), (2) with (3),
and omitted for brevity. The most orthodox utilization of (4), (5), and (6) in the field of
molecular quantum mechanics is found in the evaluations of vertical ionization potentials
and electron affinities.”

What one calls excitation energies of atoms and molecules are, in general, thought to
be the quantities concerning two-particle Green's functions, and there exist already
several remarkable studies along the line” However, unfortunately it seems very
difficult to go beyond the random phase approximation (RPA) Y or ‘modified” RPA
methods® by means of two-particle Green’s functions.

Confining ourselves to doublet radicals, we become aware of a method of evaluation
of the excitation energies from one-particle Green's functions. Of course, we never
intend to assert that the method can go to or beyond RPA with ease, but only hope
that those groupings in the perturbation series of one-particle Green’s functions may
be devised which give physically interesting results.  Although the analysis is not

completed, we think the method is worth communicating.

METHOD AND TENTATIVE CALCULATION

Returning to (4) and focussing our attention upon the two pole frequencies,

em=E""—EN_ia

0
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and
N+1

N .
e(o=E, —E,—1A,
we see that the difference between them results in the excitation energy of the N+1-

electron system, w ;
n

w, :EIXH —E]ZH =e¢ (n) — e (0). (7)
This relation is the keystone of the whole story.

Now lot us take a doublet radical of N+ I electrons, N being an even number.
The excitation energies of the radical can be obtained through (7) from the knowledge
of the pole frequencies of G(e), the one-particle Green’s function for the N-electron
system. Since N is even, we can make the ground state of H, be the Fermi sea in

which each orbital below the Fermi level is doubly-occupied by the two electrons in

the different spin states. The procedures are summarized as follows.

1) Define Go(e) for the closed system of N electrons in the nuclear framework of
the N+ I-electron radical in question.

ii) Calculate S(e) under the relevant approximation.

iii) Solve (6), obtaining the roots in the lower-half plane.

iv) Take appropriate differences between the roots obtained in iii).

Note that {% in (1) should be the matrix elements having the values in the

pq |

radical nuclear framework. How to select a set of the one-electron quantum states
{po} 1s very important, but another problem.
Only to see how our method works tentative calculation was carried out on the

allyl radical in the Pariser-Parr-Pople (PPP) model. Putting

v =8,08,7, pi=11 2 3|

in (1) and using the parameter values adopted by Longuet-Higgins and Pople in their
=10.53eV, 7, =7

23

L

PPP calculation of the allyl radical and cation” y y :74,:7,3,3
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=730¢V. 7V, =546eV, h =h =—239%V h,, =0 and 2 =h, =h, =W we

had the HF orbitals of energies € = 50eV+ W, €, ,=868V+ W, and e =

13.64eV+ W, Go(e)# being given by

e—ej—Z'A 0 0
G°(e) | = 0 c—e +ih 0
9, 0 E—e,f+Z'A

Hence, the excitation energy w =4.96¢V was obtained as the S(e)= (0 result. The first

non-vanishing contribution to S(e) in the HF basis appears in the second order ;

which is translated in the present case by virtue of the symmetry into

31/(5) 0 S/.’f(e)
S(e) = 0 Sgg(e) 0
S:u(e) 0 S:;.';(e)
with
Ve v v
S (e)= + +
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and

11 21 11 33 11 11
VZZ V32 V\?.')’ V3] V33 V]3
813(€):831 ()= — + +
6—(262—61)+ZA €—(2€3~€1)+iA €~—(2€]——e?)—ZA .

Taking account of this frequency-dependent contribution, we saw the several excitation
energies arise; w/eV=4.68, 4.85 5.0I, and so on. Although no energy-level scheme
rivalling to that obtained by the configuration interaction methodS) or the atoms-in-
molecule method? it is not very discouraging considering the stage of approximation.
By the way, another parameter choice that 7 0= = Y 4 =1084eV, 7, = 723
=544eV, ¥, =398V, h,,=h,,=—2.60eV, h, =—041eV, h,,=h,,=W and #,,
=W —1.89V led us to weV=337 344, 650, and so on. We have no interest in

the parameter manipulation here.

SUPPLEMENTARY REMARKS

It may favor our understanding of the method to add some supplementary remarks
in the rest.

A) Hole Potential

Taking the HF basis with the vanishing self-energy part, we immediately obtain
{1 €€, | | as the excitation energies of the N+1-electron radical, j and £ being
vacant in | NF> , the N- electron ground state of /. Thus it is suggested that our
method is closely related to the hole potential method7); an electron in 7 or k& feels

the average field due to N electrons in the orbitals occupied in |NF) .
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B) Hydrogen Atom
It is rather trivial but instructive to apply the method to the simplest system, the
hydrogen atom. This is.the N=0 case and we have merely a bare proton in the
electron vacuum |OF) . Because no self-energy part exists, (6) together with (4) and

(7) gives the excitation energies of the I-electron system as | lej—ekl}, {e| being a
]

set of the orbital energies of the hydrogen atom. The correct result is obtained.

C) Technical Merits
The technical merits of our method include the ones in common with any Green's
function approach using the Feynman-Dyson perturbation theory; use of the Dyson
type equation, control of approximation through the proper self-energy part, availability
of the diagrammatic language, and so on. However, it is the most remarkable that we

may work on the ‘closed’ and ‘one-less-particle’ system.
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