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Analysis of the Electron-Hole Potential Method

Makoto Isihara
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INTRODUCTION

The electron-hole potential method (EHPM)N aims at evaluating ‘concisely’ “he
excitation energies of atoms and molecules, and can be regarded as an improvemernt
of Roothaan's Hartree-Fock mothod (RHFM)Z} and Huzinaga's hole potential method
(HHPM)

An electron in a virtual Hartree-Fock (HF) orbital feels the average field due to all
electrons in the occupied HF orbitals, so that the virtual HF orbitals are more or
less overscreened and often of too high orbital energies.” This well-known situation
makes 1t reasonable to minimize a one-electron excitation energy by constructing a
new set of the wvirtual and occupied orbitals, respectively, from the virtual :nd
occupied HF orbitals." However, what one has done in EHPM seems to remain

rather obscure.
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In this paper EHPM is analyzed from a perturbation-theoretical point of view by
means of polarization propagators with Feynman diagrams.a The analysis clarifies the
structure of approximation in EHPM and gives a natural footing to further investi-

gations utilizing EHPM.

EXCITATION ENERGIES AND POLARIZATION PROPAGATORS

It is sufficient to start from the following Hamiltonian in order to discuss on the

molecular electronic structure without regard to the vibration.

H:Zh at a +ZE SaTaTa a , (1)

ha po qo po rr St qo
bqo qué’ﬁ

where ap’f and ap are, respectively, the creation and annihilation operators for the
o o3
one-electron quantum state po, ¢ standing for the spin. Taking a relevant one-electron

operator

Xsz ata |
pq po qo

bgo
rewriting (1) as
HZ(I@ +x )a*a +—~Z a_a——Zx ata |
a Vz' St qo Pq po qo
bgo PW”S pgo

and going to the representation diagonalizing {4 M+qu§,we obtain

H=L 6 810 D Y b b0 KB @

]klm Jko
ot

which is ready to be separated into the unperturbed Hamultoman F, and the pertur-

bation H' as



BF —EAET Vv v VEDOHIT 177

H=H +H'
with

H = Zeb*b 3)

Jo  Jo

and

H = Z V]Z bL 11; bmrbko Z X, b]a ko

Jklm jkao
atr

We confine ourselves to the case that the ground state of (3), |Fx)>, is well defined

and satisfies the non-orthogonality condition with the ground state of H 10);

0 |Fx> =0,

when the Feynman-Dyson perturbation theory is in principle valid.®

Now let us proceed to the story as to how to obtain excitation energies of mole
cules from polarization propagators. This is, in general, no easy problem concerning
the spin. However, we treat only the ‘singlet’ and ‘triplet’ excitations from the
‘closed ' ground state, so that the following simple (although not fully exact) wav
seems valid and practical on the assumption that

) 10> as well as |Fx)> is an eigenstate of S (S: the total spin operator) with an
eigenvalue zero.

1) |0)> has close resemblance to |Fx) structurally.

Introducing the pair operators for j¥£k

—T—N t + it
b ﬁ(bnbkr bjlb/d)

(4)
b= (bf b +btp
]k _F T— kl ji )
where t and | stand for the up-spin and down-spin, respectively, we define the polari -

zation propagator as
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M

. _ [ttt M m, b
i I?k:lm(e)~fe dt—1)<0IT" 111 M 110> (5)

with Wick’s time-ordering operator 7" and the multiplicity A (+: singlet, —: triplet). The
time argument in the square bracket indicates that the operator is in the Heisenberg
picture. A little manipulation shows that (5) can be written as

M M M M1 M;t M M, M
oMy (M MMpT 0y oMyl |y My 10)

P (=) £ ¥

1k:l . R
' n e—(MEn—Eg)+zA e—}-(ME”-—EO ) —iA

where { I% >t and { ME | are, respectively, the excited states of H and their energies;
n

My _ My M

Hl?’l n n

>

E, stands for the ground state energy, and A means a positive infinitesimal. The

numerators | ( 0| Mb‘ |M>< M| M[)Jr | 0> | being non-vanishing, MP (e) has poles

Jk ke
at the excitation energies ME —p —; A
n 0
Substituting (4) into (5), we can reduce MP_ (e) to the so-called polarization

jk:lm

propagator

b (=[e " at—r<o1Ts! (116 (1161116 [£]10),
ko jo It mr

jka:lmr

which has the diagrammatically analyzable perturbation expansion that

z;kd:lmr(e)zz(_z_)uu( i ) fez'e(t-t')d(t—t') fat ... far,

u

X CFx |TH(E) e H (1) 0] (06 ()8 (190 (1) 1Fx> | (6)

where all the operators of time arguments in the right hand side are in the interaction

picture and “Con” indicates to pick up only the terms corresponding to the connected
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? In the rest of this section we present the several zeroth and

Feynman diagrams.
first order tems of (6) with their Feynman diagrams in terms of the unperturbed one-

electron propagators G’ (e):
jo

£U) ()
- + .
€—€i+'ZA e—ei—-—ZA

G’ (e) =
Jo

with
) = { 1 (7 1s vacant in |Fx))

0
() = {
0

1 (7 is occupied in [Fx)).

Zeroth order This is nothing other than the unperturbed

polarization propagator.
€, A 3 € €
) (=5 5 & L fde G'(c )G (c ~ lo mo
pjko.‘lmr(e) or JI km 2y €1 1(61) m(EI €)
(0)
jka.'lmr(e)

First order, one-electron

, 1
b0 (€)=8 8 (X )= fde G’(e )G’ (¢ )G"(c —¢)
Jkailmt ot km I 2y 1 jo 1 lo 1 wme 7
1
pD1b (e)=8 & (=X ) _ fde G’ (e )G°(e) G(e +¢)
JRalm t ot jl mk” 2 g [ mo | ka 1 lo 1
€ ja €, —¢€ (-:]+e kael
\\ % N
€, lg mo la moe,
(1)la (116
ko Im ¢ €) Jjko: Imt e)

First order, two- electron

7
2

p% (==0 V"L fie 6 ()G (c o)
1 jo 1 ko 1

Jjkalmr ot Ik 2mi

Jde G°()G" (¢ —e)
2 la 2 meo 2
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1
2mi

) m 1
p(D26 ()= 7™ fa'g G’ (e )G’ (e —¢)
1 jo 1 ko 1

de G° G’ (e —
jka:lmz ko 2w fez zt(ez) mr(€2 €)

€, jo N A\ kae]—e €,]0 /ege] — €
VVVVAAVANMA
wm _ —
e, la N  Moe,—¢ mre, €
(1) 2a (26
(e)
jko:Imzt p/’ko:lmr(e)

There exist the other first order terms corresponding to the following Feynman

diagrams;
N
A N\/\/O/ NY
Vv
AN
ONV\ YV A
N

of which mathematical expressions are omitted for brevity.

DERIVATION AND ANALYSIS OF EHPM

Before® analyzing EHPM it is instructive and profitable to examine a nature of RHFM

by making use of the Feynman-Dyson perturbation theory.  Adopting the HF orbital

basis, we have in (2)
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- . jm_ jm
X _Z;(zvkm V") fom),

which is translated into a diagrammatic equationS)

Jjot fjg tjo
N\NVVO« + + A —0.
kot bo tho

Hence the terms corresponding to the diagrams having

as their parts exactly cancel out and do not survive. The lowest order non-vaniching

perturbation terms are consequently p{0%¢ (¢) and p (P2 (¢), so that we obtan
jkalm jkodmz

+ 0 jm Jm jm
P = P’ P (—V Wy ) O (o)
J'kflm(E) é;'/ O jk.jk(E) * jksjk(e) e TV V) B (e)t (D

putting

P° (&)= P (¢) (spin-independent).
jkik jkajkao

Here it is suitable to introduce the matrix notation;

Pleo) = {"P (e)}’

Jk:Am

PO — { 0 } .
(e) @! implk_jk (e) } (diagonal) ,
and

tV _ {_ij_*_v_mzi_vjm }
Ik ki kl .

Then, (7) becomes



Mp(e)=P°(e) +P%c) MVP(e) +-on-

Including the terms of P°(e) MVPo(e)MVPO(e), P°Ce) MVPO(e) MVPO(e) MVPO((—:),

and so on infinitely, we arrive at a Dyson type equation;

Mp(e)=P%e)+P%e) Mv Mp (o),

which gives the following equation determining the poles of MP(e).
PYe-Mvi=0 (®)

This scheme is known as the random phase approximation (RPA),Q) and we can go

down to RHFM immediately by dropping all the off-diagonal elements of MV in (8);

-1 M
,PO(G) o de'aganal |:0' 9)

which is trivial to solve, giving the well-known result as the excitation energies

specified by an occupied orbital 2 and virtual j, iE( k—j);

+
E(kof) =¢ —¢ — + K
E(k=7) % ]jk+KJk Jk

with the usual notation [ :ij and K = V]:k.
jk Jk 7k kj

The best starting point for EHPM is probably the Hamiltonian in the HF basis {;};

H:ze‘bt b+ ZV”b b x bv'e . (10)

] Jjo Jjo km jo It mr ka kR  jo ko
]lelm Jko

Note that ¢ and X.k here have definite meanings, the HF orbital energy and the HF
J J

potential, respectively. Introducing a Hermitian one-electron operator

Y: Z Y;k b]abkﬂ
with jko
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Y = k) A +f(])f (11)
and rewriting (10) as
t,.1 . ¥
H = Z 5,¢ +Y, )bwbka+ 2 Vkmbmbhbmrbg Z(Xijrljk)bja b .

Jka Tkim Tka
or

we have an eigenvalue problem that

Z(é‘e+Y)u —c u (12)

aek

in order to diagonalize | 6/,/( e_+Y_k} by a unitary transformation, which leads us to
i

1
6 b6 60 2 @ G0 tr gt @o o7

Gty bpo
ot

6¢
H= Zec*ch VcTcch Z(X— )cc
fo

By virtue of the from of (11) the new orbitals | 4} are also classified into two groups,
occupied and virtual; the new occupied and virtual orbitals are constructed, respectively,
from the occupied and wvirtual HF orbitals. Many of the fundamental properties
characteristic of EHPM come from this."’

Now lot us denote —X 9 and —?ﬁw, respectively, by
@

i) ]
A and A
Te X

in Feynman diagrams. Since any unitary transformation among the occupied HF

orbitals keeps the HF potential invariant, we have as before

T(pa
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which makes the diagrams containing

cancel out. Only the following diagrams survive to the first order;

ba N\ Yy ¥

A N 70 o /\ v

o /N Y d

8o /PN Y ¢o fo o
VVVWWWWWWWN

go AN Y 7o £t -

Here the hope is born; choosing Y well (of course, within the from of (11)), we may

take the electron-hole interaction, to some extent, into the orbital energies through (12).

The way to EHPM is to set

bo o 6o /N o fo
+ MAAMAMN + Yo =0 (13)
PT {T wo‘/\ \/§0' oo

and
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fo o to /N Ny bo o
+ MVAVMAW + Lo =0 (14)
{r ot to P Y ¢o oo

for any 4, ¢(including §=¢), and specific ¢, § and ¢ being either both virtual or both
occupied. The conditions given by (13) and (14) are easily found to be equivalent, and

by selecting the indices relevantly they result in

A== (Vv v (15)

b

for any virtual 4, ¢, and specific occupied « and

a0 Ou O
B&D— Vw +VW iVW (16)

for any occupied - 8, ¢, and specific virtual x4. Rewiting (15) and (16) in the old
representation and substituting them into (11) , we see (12) split in two eigenvalue

problems;
* a
Z(aﬂa e + AU =7 u )
k
with

+ a 1 ;
A’ = —(=V"4vExy’e)
jk ka ak ak

for the virtual HF orbitals and

Z(a e +B*)u =Au (18)
ko k= ok 6 6k

k
with

tou n Ju Ju
==V VoV
BJ/e ku t uk uk
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for the occupied HF orbitals . The new orbitals used in the matrix elements of (17)
and (18), o and y, should be self-consistently determined by putting 8= in (17) and
6=a in (18). Thus we reached the basic equations of EHPM. D The excitation energy

specified by @, 4, and M(+or—) can be obtained from the same type equation as

(9) as

“Elamu)=7 -A +] -K FK . (19)
7 a e ra pa

It is, however, not necessary to replace MV by MV in order to get to (19). We

diagonal
need only put all the pa-row and we-column components zero except for the (ua, pa)
component, MI{mm. If we take up one specific excitation, the RHFM result is also ob-
tained in such a way. Although the (ua,uB), (ne, va), (4B, na), and (va, ue) components
are exactly vanishing, this is not always thought to be an intrinsic advantage of EHPM.

M

V]'.k:].m (k=¥m) zero or very

The molecular symmetry often makes the components like
small in RHFM. The crucial point is still that the new orbitals are determined under
the influence of the u-electron and e-hole potentials.

Assuming that the occupied orbitals remain fixed, namely, putting in stead of (11)
*, . * + a
Y =f7(5)f (k) A
jk jk

where o is really an occupied HF orbital , we have the eigenvalue problem improving
only the virtual orbitals ;

Z(é‘e+i/l‘a)u =yu ,
Jkoj ko ok 8 6k
k

which requires no self-consistency procedure to determine the new orbitals in contrast
with the case of EHPM. The expression for excitation energies is remarkably simple

and beautiful ;
*E(a ~6) =7 e, -

This is HHPM. Y ?
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CONCLUDING REMARKS

In EHPM both the effect of the hole potential on the virtual orbitals and that of
the electron on the occupied are taken into account in forming the new orbitals, but
we should concentrate on a specific excitation labelled by a, ¢, and M. If we like to
compare the excitation energies specified by e and various virtual {4}, HHPM may
work better.

1) EHPM is obviously an extension of RHFM and HHPM for a specific excitation.
However, the basis obtained in EHPM can be regarded as neither an extended nor an
improved one.

One of the basic merits of EHPM is, of course, its conciseness, and when the inclu-
sion shown by (13) and (14) is of significance, EHPM has large practical value.

i) EHPM may be most successful, when applied to the comparatively large and
asymmetric molecules.

We did not try to go beyond (19) by making use of the EHPM basis. If we have
dominant off-diagonal components M%a:y,e in the ga-row and MV; b e in the wpa-column
(v¥u, B*a), it may be appropriate to solve the determinant equation containing those
components plus the diagonal. This recipe is, however, merely tentative and not

decisive.

i) It seems almost hopeless to go beyond the EHPM result by using the EHPM
basis, for the conciseness of EHPM is apt to be spoilt thereby. But we think that
there is a little room to contrive a ‘simplified’ RPA-like scheme on the EHPM basis.

The multi-configuration electron-hole potential method was already proposed.lo)
Although it is certainly an extension of EHPM from a formal point of view, we think

it takes more time to understand the intrinsic meaning and value of the method.
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