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This paper proposes to use the minor of the diagonal component in the squared adjacency matrix as
a practical index of reactivity for alternant systems having no nonbonding orbital. This index is a
closer approximation to superdelocalizability but can be evaluated much more simply than frontier
electron density. It is shown that this index has a simple relation to resonance structures. A few
remarks are added concerning Dewar’s localization energy and the analysis by Fukui and his
coworkers on approximation to superdelocalizability.

1. Introduction

Frontier electron density is prevalently used as the simplest index of reactivity for qualitative
consideration on chemical reactions, in particular, of conjugated systems. This index of
reactivity has a great advantage, when it is valid, in reflecting symmetry properties of systems.
It is well-known that this index can be regarded as a natural approximation to
superdelocalizability which is one of the most reliable indices of reactivity in the Hiickel
model.

Consider an alternant system consisting of m black and m white sites. Denote the set of
the black sites and that of the white by M., and M_,, respectively, and define the color indicator

o (r) of site r as

+1 (reM,)
)= 0

-1 (reM,).
Assume the system to have no nonbonding orbital, that is, the adjacency matrix A4 of the system
to be invertible. Let 4, and ¢,; be, respectively, the j-th eigenvalue and the site-» component of
the j-th normalized eigenvector (orbital) of 4. For brevity of description, eigenvalues are
assumed to be nondegenerate and to be numbered from 1 to 2m in decreasing order. Then, by
virtue of the alternant symmetry that

Aom—jr1 =4 ()
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and
Cr2m—j+l = O"(?”)C,j’ (3)

the superdelocalizability S, on site » (Fukui, Yonezawa, and Nagata, 1954) and the frontier
electron density f, on site » (Fukui, Yonezawa, and Shingu, 1952; Fukui, Yonezawa, Nagata,
and Shingu, 1954) can be written as

S, =2>c} /4, 4)
=1

and

fr =2Ch, (5)

without regard to types (electrophilic, radical, and nucleophilic) of reactions.

Because the leading term in the sum over j in S, above is usually the term for j=m, frontier
electron density is a reasonable one-term approximation to superdelocalizability (Fukui,
Yonezawa, and Nagata, 1957). Naturally, frontier electron density is often invalid, say, when
cn vanishes, when A, having large |c, /| is close to 4,,, or when eigenvalues are accumulated
near A,. Such situations can occur rather frequently in systems consisting of many sites.

This paper proposes to use the minor of the diagonal component in the squared adjacency
matrix as a practical index of reactivity for alternant systems having no nonbonding orbital.
This index is a closer approximation to superdelocalizability than frontier electron density and
does not share the above-mentioned disadvantage of frontier electron density. Still, the
evaluation of this index is much simpler than that of frontier electron density. A simple
relation is shown to exist between this index and resonance structures. A lucid explanation is
given to the fact that Dewar’s localization energy (Dewar, 1952) works well in spite of its
crudeness as an approximation to Wheland’s localization energy (Wheland, 1942).

2. Resonance-Theoretic Index of Reactivity

Because the squared adjacency matrix A of the system under consideration is positive definite,
we can well define the matrix

T(0)=(4%>)"° (6)

for an arbitrary real number 8. The r-th diagonal component T, (&) of 7(&) can be written as
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T,(0)=2> ci /A’ (7)
j=1
by using the alternant symmetry mentioned above for 4; and c,;. Thus, the quantity
S,0)=2,"" T,(0)=22 w;(0) c;;/ 4, @®)
j=1

can be regarded as “weighted” superdelocalizability with weight
w; 0)=(4,/2;)". ©)

In this notation, the case of &=1/2 bears S,, where every weight is unity, while the case of 6=
o does f,/A,,, where only the weight for m is unity with the others vanishing.
It is readily found that S,(@) decreases monotoneously as &increases from 1/2, that is,

S >85.(8)>S,0)>f. 14, (1/2<0<6'<»). (10)

Therefore, since no S,(&) for nonintegral @ larger than 1/2 will be evaluated more easily than S,
itself, the best practical approximation to S, is obviously S,(1). Fukui and his coworkers
(1961) noticed the usefulness of the quantity corresponding to 7,(1) as an approximation to
superdelocalizability through quite a different way. However, they seem to have paid no
attention to the fact that 7,(1) is the »-th diagonal component of (4" atall. They examined
the correlation between T,(1) and S, numerically to obtain the conversion curve.

By numbering black sites from 1 to m and white sites from m+1 to 2m, the adjacency
matrix 4 can be written in the form

0 B
A=(, j (11
B 0

with a relevant mxm submatrix B. Denote B ‘B and ‘BB by T,, and T-,, respectively, and
define ¥ as

r (rEM-H)
75{ (12)

m-—r (reM,).

Then, using the symbol |X] for the determinant of X and the symbol |X[r]| for the minor of the r-th
diagonal component in X, we can express 7,(1) as

Tr(l)lea'(r)[?]l/lTo'(r) |' (13)

Here note that |T,,| and |T-,| are identical with the absolute value ||A|| of |[4]. Since |lA|| as
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well as A, is a positive constant within the system, the quantity (the minor of the diagonal

component in A°)

R, =T, 1| (14)
can be used in place of

SM=4,|l4]" R, (15)

as a relative index of reactivity. As shown in the next section, this index is related to
resonance structures in quite a simple way and seems to deserve to be named resonance
delocalizability.

Resonance delocalizability takes integral values and can be evaluated simply by
calculating determinants of integral components or by inverting A* without solving the
eigenvalue problem of 4. In sharp contrast to frontier electron density, resonance
delocalizability contains contributions from other orbitals than the m-th orbital (frontier orbital)
to some extent. In particular, contributions from orbitals belonging to eigenvalues near 4, are
almost completely taken into account in resonance delocalizability.

The best way of evaluating resonance delocalizability depends on systems. For large
systems contaihing heavily peri-condensed structures, we have to rely on numerical calculation
in general. In such cases, if one needs to compare reactivities for many sites involved, it may
be suitable to calculate (1), that is, (4>)”" as a whole. Calculating the inverse of A° is still
much easier than solving the eigenvalue problem of 4. This must be advantageous
particularly for investigating site reactivities of the system whose eigenvalue problem is
difficult to solve. Except for extremely large systems, the primitive Newton type iteration by

T =29TM)-TMA* TQ) (16)
works adequately, where DT(1) stands for the i-th guess for T(1). The plain initial guess
OT()=1/k (17)

is relevant with k=4 for nonpathological conjugated systems. For systems containing no
heavily peri-condensed structure, we can evaluate R, without aid of computers by calculating
appropritate minors or by enumerating appropriate Kekulé structures as shown below.

3. Relation to Resonance Structures

The component of the inverse of the adjacency matrix is regarded as a kind of bond orders
(Ruedenberg, 1954; Ham and Ruedenberg, 1958) and explicitly related to resonance structures
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(Ham, 1958; Isihara, 1996). Hence, through the identity

(4% =) (18)

we can immediately relate resonance delocalizability to resonance structures in quite a simple
way.

For the alternant system having m black and m white sites, we can assign m! permutations
of the symmetric group of degree m to m! general resonance structures’’ having m bonds all
between black and white sites, so that the parity of the permutations can be appropriated to the
general resonance structures. Let us refer to the Kekulé structure including a bond between
sites 7 and s as the rs-Kekulé structure and to the resonance structure having a nonadjacent
bond between sites r and s besides m—1 adjacent bonds as the rs-Dewar structure. Using the
number K, of Kekulé structures of parity 7 and the number J,(rs) of rs-Kekulé or rs-Dewar
structures of parity 7, we can express the rs-component v,, of A as

vy = (L, ()= DIK, ~K)  (0()#a(s))  (19)

(Isihara, 1996). Since 4™' is real-symmetric, the well-known relationship

(K. -K ) = 4] (20)
(Dewar and Longuet-Higgins, 1952) immediately lead us to
R = Y. (J.(r)-J_(rs))’, (1)
seMz

F(r)
where & (7) stands for —o ().

It will be preferable to rewrite the expression above in terms of the algebraic structure
count (Wilcox, Jr., 1968; 1969). Let ASC(rs) denote the algebraic structure count of the
subsystem derived by deleting sites » and s. Although the algebraic structure count of each
subsystem does not necessarily stand on an identical reference of parity, the squaring process
removes the influence and, therefore, we have

R, = D ASC(rs)’. (22)
SEMz(,)

If the system contains no 4n-membered ring, either J.(rs) or J_(rs) vanishes and the expression
can be simplified to

U The term “general resonance structures”™ here means resonance structures allowed to have bonds not only between
adjacent sites but also between nonadjacent sites of different colors.
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R, = z:K(rs)2 (23)

seMz )
with the number K(rs) of Kekulé structures of the subsystem derived by deleting sites » and s.
Through the expressions obtained above, we can understand how resonance structures
contribute to reactivity on each site. It should be emphasized (rather from a conceptual point of
view) that the evaluation of resonance delocalizability can be reduced, in principle, to the
enumeration of resonance structures of appropriate subsystems.

4 . Supplementary Remarks

Dewar’s localization energy /. for site r is originally defined in terms of nonbonding orbital
coefficients of the odd-alternant subsystem derived by deleting site » (Dewar, 1952; Dewar and
Longuet-Higgins, 1952), but it is not difficult to prove that the relationship

I, =24,8,1) "0 R, (@

which assures that the analysis with /, always gives the same conclusion as the analysis with
R.. Dewar’s localization energy is quite a crude approximation to Wheland’s localization
energy and comparisons by differences in Dewar’s localization energy cannot be soundly
justified on the basis of Wheland’s localization approach (Koutecky, Zahradnik, and Cizek,
1961). Nevertheless, Dewar’s localization energy can work surprizingly well as an index of
reactivity. The analysis in the second section with the relationship above provides a lucid
explanation to this.

To define the condition under which frontier electron density gives the same conclusion on
sites reactivities as superdelocalizability, Fukui and his coworkers (1957) examined a series of
quantities 7, (/)’s for /=1,2,- in the present notation. Let A(z) be the secular determinant of 4
and let A,(z) be that of the matrix derived by deleting the »-th row and the r-th colum from A.
Using the quantity essentially identical with

G,(y) =A,, (i) /(iyAGiy)), (25)
they pointed out that
l,==2G,(0y"? =2T,(1)7"? (26)

but affirmed that frontier electron density was the simplest to calculate. As already mentioned,
they took up T(1) as “a simple reactivity index” afterwards (1961).
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