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This paper analyzes bond delocalizabilities of even-membered linear chains noncomputationally. Bond
delocalizabilities between different-color sites are essentially Ruedenberg bond orders, calculated easily
for linear chains by inverting the adjacency matrix. As for bond delocalizabilities between
identical-color sites, a reduction formula is prepared to express them in terms of superdelocalizabilities
of linear chains and used together with an analytic expression of the superdelocalizabilities to provide a
plain analytic expression to the bond delocalizabilities. Behaviors of bond delocalizabilities in linear
chains are examined by using the analytic expression, the reduction formula, and asymptotic estimates of
superdelocalizabilities in long linear chains. Basic features of the bond delocalizabilities are fully
clarified in quite a simple way.

1. Introduction

In the previous paper (Isthara, 1997) on a noncomputational analysis of superdelocalizabilities of
even-membered linear chains, the author derived an analytic expression of the superdelocalizabilities.
This analytic expression was used to examine behaviors of superdelocalizabilities in long linear chains and
led us to a few asymptotic expressions of the superdelocalizabilities (Isihara, 1997; Hosoya and Iwata,
1999). The present paper concerns bond delocalizabilities (Fukui, Imamura, Yonezawa and Nagata, 1961)
of even-membered linear chains. Bond delocalizability cannot be regarded necessarily as a “direct” index
of reactiviy and seems far from being prevalent. It will be not futile, however, to know basic features of
this quantity in such typical systems as linear chains. In what follows, no confusion being expected, the
word “even-membered” is omitted for brevity, “superdelocalizability” and “bond delocalizability” are
abbreviated to SD and BD, respectively, and the parity with respect to alternant symmetry is referred to
simply as color.

The next section is preliminary, giving a concise description of a few general properties of BDs. The
subsequent section derives an analytic expression of BDs of linear chains. BDs between different-color
sites are essentially Ruedenberg bond orders (Ruedenberg, 1954) and can be calculated easily for linear
chains, say, by inverting the adjacency matrix. As for BDs between identical-color sites, a reduction
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formula relating them to SDs of linear chains is derivable from the hypervirial condition (Isihara, 1989,
1991a) upon BDs, so that the analytic expression of the SDs previously obtained suffices to provide an
analytic expression to BDs between identical-color sites. The last section examines behaviors of BDs of
linear chains by using the analytic expression, the reduction formula, and asymptotic estimates of SDs in
long linear chains, clarifying basic features of BDs of linear chains.

2. Preliminaries

Consider a Hiickel system specified solely by adjacency of sites and assume the adjacency matrix 4 of the
system to be regular. Denote the j-th column eigenvector of 4 by C ; and its eigenvalue by A i We
can assume { C j}to form a complete orthonormal set. Let us confine ourselves to the normal state in
which each orbital j of positive A j is doubly occupied and others are unoccupied. Then, introducing
the auxiliary index g taking the values 1, 0, and —1, respectively, for electrophilic, radical, and nucleophilic
reactions, we can define the SD matrix S8’ as

s =3 ‘%T% c,'c;. (1)
J J J
The r-th diagonal component § ,(;g ) of this matrix is the SD on site ¥, which is conventionally denoted by
S(2) . The BD between sites 7 and s is the off-diagonal component 58’ of § (¢) " Naturally,
S s real-symmetric.
The bond order matrix P for the normal state mentioned above can be written in a well-turned form as'

-y e e,
P_%:WCJ C;. @

)

The off-diagonal components of this matrix are bond orders, while the diagonal components are electron
densities on sites measured from unity. Using P and the inverse of A, we can decompose .§ (&) g

S® =4'prga!, 3)

where the dependence of S‘¢’ on g is ascribed solely to A ~! When the system is altemant, A~
and P have nonvanishing components only between different-color sites as well as 4, and A4 1P does
only between identical-color sites. Therefore, s\ is simply equal to either (A~ P),; or

g(A_l ), » depending on whether the color of # and that of s are identical or not. BDs between

1) This bond order matrix difters form the p-density matrix (bond order electron density matrix) by the unit matrix.
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identical-color sites as well as SDs are necessarily independent of g, denoted simply as s, as well as

S,.

Let o, stand for the color of r and let ¢, denote the site-# component of C Alternant

symmetry enables us to rewrite the component of A
A;>0

(A_I)IS RS 0'0' )Z Cgj» @)

so that we can regard it as a kind of bond orders. This kind of bond orders is closely related to Kekulé
structures (Ham and Ruedenberg, 1958; Ham, 1958; Isihara, 1996) called Rudenberg bond order. Since
the component of A4 P canbe naturally written as

| N

)

o

(A7P),, = 'Z
J

it is formally the same kind of bond orders as Rudenberg bond order, though it seems no longer to be
related to Kekulé structures. BDs between identical-color sites can be nonvanishing, forming a striking
contrast with bond orders between identical-color sites which necessarily vanish from altemant symmetry.

3. Analytic Expression

Consider the linear chain of # sites with 72 even.  Number the sites consecutively from 1 to #2 and denote
the set {1, -, m} of natural numbers by M. This system is alternant and we can assign one color to the
odd-number subset M, of M and the other to the even-number subset M, of M. Let 7 stand for
m—++1. Then, site 7 is equivalent to site » from the symmetry of the system, but the color of
7 differs from that of 7, namely, » belongsto M. for ¥ € M, and vice versa. Let us prepare the
symbol 7 indicatingrfor ¥ € M. and r for r € M forthe sake of convenience.

The adjacency matrix A of this system is regular and the inverse A" canbe easily calculated to
provide BDs between different-color sites:

_1\(r=sl-1)/2
{g( 1) (r<s,reM, or r>s,seM,) [”aSEMj o

0 (r<s,reM, or r>s,seM,) \O, # Oy

" Obviously, this quantity takes one of the three values 1, 0, and —1 without regard to /7.
To deal with BDs between identical-color sites, it will be the best to utilize the reduction formula

rs = S(ras)2 ~ Sprosl/2 (r#seM, o,=0y) @)
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valid for linear chains. ' This formula follows from the hypervirial condition
[s¢), 4]1=0 ®)

upon BDs,” exactly as the reduction formula for bond orders follows from the hypervirial condition upon
bond orders (Isihara, 1991b).  Since the derivation is completely similar, no description will be necessary
about it here. Using the expression (Isihara, 1997)

- icosec 2k-1 . (r e M) ©)
" om+14 2m+2
for SDs in the reduction formula above and arranging the summation index relevantly with the symmetry
of cosecant, we obtain
_qr-si/2 )72 _ rseM
Sy = [ty > cosec[ 2k—1 n) (10)
m+l 50 2m+2 0p=0)

This expression remains valid even if 7 and s coincide, namely, this includes the expression of SDs as a
particular case. To evaluate one or some of BDs of a linear chain, this expression is certainly useful.
However, if all of the BDs are required, we must use the reduction formula after evaluating all of SDs of
the linear chain. The SDs can be evaluated quite efficiently by calculating S, for r e M,

consecutively and by using the symmetry S, = S-.

4. Basic Features

What we have to do here is only to read the expressions (Egs. 6 and 10) of BDs obtained in the preceding
section. The expressions are already so explicit and lucid that we will need no complicated argument.
Furthermore, the reduction formula (Eq. 7) and the asymptotic estimates of SDs obtained in the previous
paper (Isihara, 1997) are helpful to examine behaviors of BDs in long linear chains.

First, let us interpret behaviors of BDs between different-color sites on the unique Kekulé structure of a
linear chain. Let &, and 7, respectively, denote the number of double bonds and that of single
bonds between sites # and s in the Kekulé structure. Then, &, and 77,, necessarily differ by unity
for different-color sites. If &, is larger, then S,(.Sg )" is either g or — g, depending on whether &, is

odd (g) or even (- g). If 7, is larger, s'8) vanishes. A remarkable feature is that the absolute

2) The proot of this condition is trivial. ~ For linear chains, this condition yields another formula reducing BDs
between distant sites of different colors to differences between adjacent-site BDs. We may use it to obtain the
inverse of the adjacency matrix.
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value of nonvanishing s ,(;g )" remains unity for different-color sites without regard to 7.

Next, let us proceed to BDs between identical-color sites. Let d,., denote the distance |r—s| between

sites ¥ and 5. Since ., is a cumulative sum of positive cosecant terms multiplied by the whole sign

d. /2

factor (—1)“~'", s, ispositiveif d, isamultiple of 4, and negative if ., is an even number,

not a multiple of 4.

Note that, aside from the sign factor, 5, depends on » and s only through the initial and the final
values of the summation index, and that they contain »+s and o, separately. With the distance d .
fixed at d, we find that the “end” BD

m+1 47,

(_l)d/Z m—d/2
[Zm +2

k_lnj (m—2zd'eMe) (11)

is the maximum for even d/2 and the minimum for odd /2, while the “next-end” BD

(=972 d+1
S2.24d = T | S T 2

d+3
T |+ COSeC T m-2>deM 12
is the minimum for even /2 and the maximum for odd d/2. Now, let the center (r+s)/2 be fixed at ¢
and let [r—s]/2 be a variable w. Naturally, we can assume m >4 and w=1. It is obvious that

S attains the minimum at odd w as small as possible and the maximum at even w also as small

c—w, ctw
aspossible. Hence, s._| ., isalwaysthe minimum. If 7, 2> 6,then S._» .., isthe maximum
under the assumptionthat ¢ —2 > 1 and ¢ + 2 < m . Thus, provided that m > 6, the largest and the
smallest of BDs between identical-color sites are | 5 and s, 3, respectively. The absolute values of
these BDs become large as m increases: §) 5 exceeds unity with m =18 and | s ;| does with
m=12.
Lastly, let us examine asymptotic behaviors of BDs in long linear chains. As 1 becomes large with
left fixed, the next-end BD converges as
_{E:T+d+3

lim 53 5,4 =(=1)
m—>o0 T

j (m>deM.,). (13)

For example, the maximum s, 4 for d=2 converges to —16/15n (~— 0.34) and the minimum Sy for
d=4 converges to 24/35m (=0.22). On the other hand, the end BD diverges, since the final value of the
summation index includes 7. To see this situation, it may be appropriate to return to the reduction
formula. We have only to note that SDs on odd sites near site 1 as well as S| are logarithmically
divergent and that SDs on even sites near site 1 are convergent. In the reduction formula

$3.2+d =Sdr2+42 =Sd/2 (14)

—159(289 ) —



Review of Economics and Information Studies

both of the two SDs are either divergent or convergent, while in
Stted =Saraet =San2 (15)

one of the two SDs is logarithmically divergent and the other convergent.
Asymptotic estimates for the end BD are derivable from relevant asymptotic estimates of SDs in long
linear chains (Isihara, 1997).  Say, up to the first order of m ! , we have

S1 1t ;(—1)‘“2%(1n m+D—q>(d)+m‘1) (m>>deM,) (16)

with
D =In(8/ )+ y (Euler's constant) = 1.51193 a7
and
di/?2 1 1
o(d) =12 + 18
() I{Z:‘{Zk—l d+1. (19

Now, suppose that identical-color sites 7 and s are, respectively, near site 1 and site 7.  Then, |r—s}/2 as
well as (+5)/2 must be approximately m/2. Therefore, the asymptotic estimate of SDs in the middle of
long linear chains (Isihara, 1997) leads us to

1 1
S(l‘+5‘)/2 ES|’._S|/2 :;(ln m+D)+O(m ) (19)
and, through the reduction formula, we have
lim s, =0 (r<<m, m—s<<m, 0,=0). (20)
11—>0

That is to say, as linear chains become long, BDs between a site near one end and an identical-color site

near the other end tend to zero.
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