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Introduction.

In [Hu] Huneke proved the following theorem.

Theorem. Let A be a complete local ring containing a field, e(A) the multipilicity of A ,and n =
2 an integer. Suppose that A satisfies (S,)and e(A) = n. Then A is Cohen-Macaulay.

This theorem is deduced from the following facts:
(1) A contains a regular local subring R such that A is a finite module over R and rank A) = e(A)
(2) R is a direct summand of A as R-module (Hochster's direct summand conjecture).
(3) Syzygy theorem of Evans-Griffith [EG].
Hochster [HoZ] showed that syzygy theorem for regular local rings is a consequence of the direct
summand conjecture. O’carroll [O] showed that syzygy theorem for regular local rings holds if
Huneke’s theorem is true without the the assumption that A contains a field. We note that the
property (1) does not always hold if A does not contain a field. For example, let A = R[[X]]/p* - X°),
where R = Z, is the ring of p-adic integaers. Clearly, e(A) =2 and R is the only regular local
subring of A over which A is a finite module. But, since A is Cohen-Macaulay, we have

rank(A) = L(A/pA) =3 .

Huneke conjectures that his theorem holds without the assumption that A contains a field. It is
easy to see that if A has property (1) then his conjecture is a consequence of the direct summand
conjecture. For a complete local ring which does not contain a field, it is not known whether Huneke’s
conjecture is implied by the direct summand conjecture. Although Huneke stated that his conjecture is
true for n =2 no proof has been given and his conjecture seems to bz open even for n =2 . The

purpose of this paper to show that his conjecture for n =2 is implied by the monomial conjecture.
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In this paper a ring means a commutative Noetherian ring with unity and a local ring means a

Noetherian local ring. (R,m) denotes a local ring R with maximal ideal m .
§ 1 A property of conductor ideals of Gorenstein domains.

We begin with recalling the monomial conjecture. (A,m) be a local ring with dimA=d and g=

a,,a,,**,a, asystem of parameters of A .
Definition. We say that a system of parameters a of A has monomial property if
(alaz' . .ad)n $ (a1n+1,a2n+1’ .o .adnol)

for all n > 0 . We say that A has monomial property if every system of parameters of A has

monomial property.

The monomial conjecture asserts that every local ring has monomial property [Ho,]. We rephrase
the monomial property in terms of local cohomology.
Let (A,m) be alocal ring with dimA =d and a=a,,a,, ", a, asystem of parameters of A . (g")
denotes the ideal of A generated by af,-:-,a; for n>0.Let f, : Al(a) — Al(a"') be the
homomorphism defined by f,(x mod (a")) = aja,* - ‘axx mod (g™’ ). Then A/(@"),n=12, -+ forma
direct system and its limit is H,(A) ,the d-th local cohomology module of A [HK]. We have a

canonical homomorphism
gal):All@ = HXA).

Then we see that a has monomial property if and only if #(a I)(1) # 0. Note that the monomial
conjecture holds if every complete normal local domain has monomial property, see [Hol] or [HoZ].

Let (R,N) be a complete local Gorenstein domain and (A,m) a finite birational extension of R,
and let C = Ann(A/R) be the conductor ideal between A and R . The canonical module K, is
isomorphic to Hom,(A,R) by [HK]. It follows that K, is isomorphic to C . By the multiplication
we have a pairing

*) CQO,A — R.

Let a be a system of parameters of R . Tensoring (*) with R/a'R ,n=

1,2,- -+ ,and taking the limit,we get a commutative diagram
C®,AldA — RigR
| Lo,
C®HXA) — H®),
¢
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where 7, is the canonical homomorphism. ¢ induces a homomorphism

4 : H%A) — Hom CH,(R)).
Lemma 1. @ is an isomorphism.

Proof. We first note that,since R is Gorenstein, H/(R) is isomorphic to the injective envelope
of R/N. Therefore,it is enough to show that the induced map
g’':C" — HAAY
is an isomorphism,where ()’ = Hom,( ,H,*(R)). By Matlis duality, the canonical map C — C” is an
isomorphism and composing it with ¢’ ,we getamap ¢ : C — H,Y(A) givenby ¢(x)(a)=
;//(x® e) for x € C and « € H,(A) .On the other hand,we have a canonical isomorphism
H,%A) — H/(R) ®,A.
By this map,an element « € H,“(A) represented by (y mod g’A) € Alg’A is mappedto 7 (1) ®y
and we have ¢ (x)(«)= 7 ,(xy) ,where »,:R/a'R — H,/(R) is the caononical homomorphism.
Hence we get
C — Homy(H,(A),H/(R))
> Hom(H,/(R)® A Hy(R))
= HomA,R)
by Matlis duality. It is not hard to see that the image of x € C in Hom,A,R) is the multiplication
by x and hence C — Homy(A,R) is an isomorphism and it follows that ¢ is also an

isomorphism.

Prpopositon 2. Let R be a complete Gorenstein local domain, A a finite birational extension
of R and C = Hom{A,R). Suppose that A has monomial property. Then for any parameter ideal
q of R wehave C Z q.

Proof. Llet g =(a,,a, :°*a,) and a=a, ,a,," ", a,. We use the same notation as in Lemma
1. By Lemma 1 and the monomial property of A we have o := #(a i)(I) ¥ 0. Hence there exists
an element x € C such that
(x® a)= » (x+aR) * 0.

Therefore x & q and hence C Z g .

Definition. We say that a local domain R has conductor property if Anni(R*/R) & g for any

parameter ideal of R ,where R* is the integral closure of R in its quotient field.
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By Proposition 2 we see that if the monomial conjecture holds then every complete Gorenstein

domain has conductor property. We can show that the converse also holds.

Theorem 3. The following statements are equivalent.
(1) The monomial conjecture holds.

(2) Every complete Gorenstein local domain has conductor property.

To prove this we need a lemma.

Lemma 4. Let A be a complete local domain and let a, ,a,," -, a, be a system of paecameters
of A. Then there is a subring R of A such that
(1) R is a complete Gorenstein local domain,
(2) A is a finite birational extension of R and

(3a,,a,, " :,a, ER.

Proof. Let S be a coefficient ring of A and let R, = S[{a,,a,, ", a,]] . Then A is finite over
R,and R, is a regular local ring or a hypersurface. Let Q(A) and Q(R;) be hte quotient fields of A
and R, ,respectively. If [Q(A) : Q(R)] =1 then R, fulfills the requirements. Suppose that
[O(A) : Q(R)]> 1. Let n be the smallest natural number for which there is a monic polynomial f{X)
€ R,[X] withdeg fiX)=n and f(x)= 0 for some x € A - Q(R,) . We claim that

R|[x] = R [XVFOXOR[X] .
Suppose that there is a polynomial g(X)=a,X"+ *** +a, € R[X] suchthata, + 0,2 = m<n ,and
fix)=0. Then the monic polynomial

MX)=X"+a,a, X"+ +a,""a,
over R, satisfies h(a,x) =0 and we have a,x € A - Q(R)). This contradicts to the minimality of
deg fiX) . This proves the claim and R [x]is a complete intersection. Since [Q(A) : Q(RI[x]) <
[Q(A) : O(R))], the proof will be completed by induction.

Proof of Theorem 3. It is enough to show the implication (2) = (1).
As remarked before it is enough to show that every complete normal local domain has monomial
property. Let A be a complete normal local domain and 4, ,a,, - - -, a, a system of parameters of A .
Take a Gorenstein local ring R as in Léemma 4 which contains a, ,a,,- -, a, . Suppose that the
monomial conjecture fails to hold for A and g, ,a,, -, a, . Then there is a natural number n for
which there exist x,,x,, -, x, € A such that

(*) (alaZ. . .ad)n =x1a]n+1 +x2a2m-1 4+ - +xdadnol .
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By (2) there is an element x € Ann A/R) - (a, ,a,, * - -, a,)R . From (2) we have

x@a,a,cca) = (x)am + (exas + 0+ (xxast .
But,this implies that x € (aq, ,a,, * - *, a,)R ,contradicting to the choice of x . Therefore,the monomial
conjecture holds.

Hochster [Ho,] showed that every local ring containg a field has monmial property.
Corollary 5. Every complete Gorenstein local domain containing a field has conductor property.

Remark. Let (R,m) be alocal domain of dimension 1 . If the normalization R* of R is
finite over R then R has conductor property. In fact, if C = Ann(R*/R) & aR for some a € m
we can write C = aJ for some ideal of R .Then we have JR* = (1/a)CR* = (1/a)C = J .This shows
that / & C and C € aC . This implies that C = (0) by Nakayama’s lemma . This is impossible since
R* is finite over R. A local ring A is said to be quasi-Gorenstein if the canonical module K, is
isomorphicto A. If A is a complete quasi-Gorenstein domain containing a field A has conductor
property.To see this, let B be the normalization of A and g a system of parameters of A . Take a
Gorenstein subring R of A asin Lemma 4 . Then we have C,; = Anny (B/R) € C,,= Ann (A/R) =
K,. Since A is quasi-Gorenstein we have C,, & aA for some a € C,,; and we have C,, = aJ for
some ideal J of A . Then we get C,, =BC,, = aJB = aJ ,which implies JB = J . Therefore, ] & C,,
and consequently,we have C,, & C,,C,,. Suppose that C,, & gA . Then we have C,, & aAC,, ©
aR . This contradicts to Corollary 5 . Hence C,, € gA .

§ 2 Local rings with multiplicity 2 .

In this section we study local rings with multiplicity 2 satisfying (S,). The conjecture is that such

rings are Cohen-Macaulay. We first show that if the local ring is not a domain the conjecture is true.

Proposition 6. Let R be a complete local ring with e(R) = 2 .Suppose that R is not a domain.
Then R is Cohen-Macaulay if and only if R satisfies (S,) .

Proof. Since R is catenary and satisfies (S,) we see that R is unmixed by [G2],(5.10.9).
Hence,by the associativity of multiplicity we get
2=2 I(R,)e(R/p) .
p € Ass(R)
There are two possibilities.
Casel. Ass(R)={p,, p:}
In this case R/p, and R/p, are regular by [N],(40.6). From the exact sequence
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*) 0O~ R — Rp, PRlp, > Rpp,+p, — 0
we see that for any Q € Ass(R/p, + p,) we have ht(Q) =1 by
(S,)-conditionon R. Hence ht(Q/p,) =1 forall Q € Ass(R/p, + p,).
Therefore, (p, + p,)/p, is a height 1 unmixed ideal of the regular local ring R/p, . Hence, R/p, + p, is a
Cohen-Macaulay ring with dimension d — 1 . The exact sequence (*) shows that R is Cohen-
Macaulay.
Case 2. Ass(Ry={p}.
In this case e(Rfp) =1 and (R, = 2. This implies that p’=(0) and R/p is regular. The exact
sequence
**0—>p—=R—>Rp—0
shows that p is a reflexive R/p-module of rank 1. Hence p is free as an R/p-module. From (**) we
see that R is Cohen-Macaulay.

We are going to show that if a complete local domain has the property

(1) in the introduction then the conjecture is true.

The idea of the following proof is due to Hochster.

Proposition 7. Let (R,m) is a complete local ring with e(R) = 2. Suppose that R contains a
regular local subring (S,n) such that R is a finite S-module and e(R) = rank(R). Then R is
Cohen-Macaulay if R satisfies (S,) .

Proof. By induction on d = dim R . The assertion is clear if d = 2. Suppose that d = 3. Let
p € Spec(S) be a prime ideal of S which is not maximal. We claim that R, is Cohen-Macaulay.
Let T be the completion of S, and A the pS,-adic completion of R,. Then A is either a product of
two complete local rings,say A =A, X A, or a complete local ring. Since R is complete A satisfies
(S,) . Then we get
2= e(R) = rank(R) = rank(A) .
If A=A, X A, thenboth A, and A, satisfy (S,) and e(A)=e(4,) =1

because rank (A) = e(A) . Hence A, is regular by [N],(40.6) and consequently R, is Cohen-

»
Macaulay. Suppose that A is a local ring. Then R, is a local ring and A is the completion of R, .
By [N],(40.1) we get

Z2=eR) = e(R,) .
If e(R)=1 then R, is regular. Suppose that e(R,) = 2. Then rank,(A) = e(A) = 2.Then by induction

hypothesis A is Cohen-Macaulay. Therefore R, is Cohen-Macaulay ,as claimed. Now the claim
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implies that the exact sequence

0—>S,— R, — (RS), > 0
is split exact and (R/S), is Cohen-Macaulay for any p € Spec(S) - { n } . Since depth R/S = 2 we
see that R/S is a reflexive S-module of rank ] . Therefore R/S is a free S-module. Hence R is

Cohen-Macaulay.

Proposition 8. Let (R,m) be a complete Gorenstein domain with e(R) = 2 and let A be a finite
birational extension of R . Suppose that A satisfies (S,) . If the conductor C,, is not contained in a

minimal reduction q = (a,,a,, ", a)R of m with d=dimR.Then A is Cohen-Macaulay.

Proof. Recall that C,, is isomorphic to the canonical mudule K, of A and C,, is a height 1
unmixed ideal of R ,(see [HK]). Since A satisfies (S,) , the canonical map A — Hom(Hom,A,R),R)
is an isomorphism. On the other hand, C,, is isomorphic to Hom(A,R) . Hence A is isomorphic to
Homy(C,,, R) . By local duality it is enough to show that C,, is Cohen-Macaulay as R-module.
Clearly, we may assume that A ¥+ R . By assumption [(R/q) =2 and C,, +g/q ¥ (0). We have
C.x+q=m.Since a,,a,, ", a, can be extended to a minimal generating set of m , C,, contains
v —d elements of a minimal generating set of m ,where v is the embedding dimension of R .Hence
the embedding dimension of R/C,, is at most d and dim R/C,,=d-- 1. Since C,, is unmixed

R/C,, is a hypersurface. Now we can conclude that C,, is Cohen-Macaulay.

As a corollary of Proposition 8 we have:

Corollary 9. If the monomial conjecture holds then Huneke's conjecture for n = 2 is true.

Question: Under which condition a local domain has conductor property ?
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