Norio Yamauchi

Abstract

Let k be a field of characteristic 0 and $K = k(X_1, \ldots, K_n)$ a rational function field over k in n variables. In this paper we study the field K^{δ} of constants for a linear k-derivation δ of K. The main result is THEOREM 4.3, which gives an explicit description of generetons of K^{δ} over k when k is algebraically closed.

Received Apr. 28, 1995

Key words: linear derivation, field of constants.

1 Jordan decomposition

Let k be a field and $K = k(X_1, \ldots, X_n)$ a rational function field over k. We set $D_0 = \{\delta \in \operatorname{Der}_k(K) \mid \delta(X_i) \text{ is a linear form in } X_1, \ldots, X_n \text{ for } i = 1, \ldots, n\}$ and $V = kX_1 + \cdots + kX_n \subset K$. There exists an isomorphism $D_0 \to \operatorname{End}_k(V)$ of k-vector spaces given by $\delta \mapsto \varphi_{\delta} = \text{the restriction of } \delta \text{ to } V$. Its inverse is given by $\varphi \mapsto \delta_{\varphi} = \sum_{i=1}^n \varphi(X_i) \partial/\partial X_i$ for $\varphi \in \operatorname{End}_k(V)$.

Let $\delta \in D_0$. We say δ is semisimple (or diagonal or nilpotent) if φ_{δ} has the same property (as a k-endmorphism). Using the Jordan decomposition of φ_{δ} and the isomorphisms above, we see that there exist δ_s , $\delta_n \in D_0$ satisfying the conditions : $\delta = \delta_s + \delta_n$, δ_s is semisimple and δ_n is nilpotent. Thus we have the following, which shows that when k is algebraically closed, any liner k-derivation can be expressed in the 'canonical' form:

LEMMA 1.1 With the same notation as above, assume that k contains all the roots of the characteristic polynomial of φ_{δ} . Then we can chose a set $\{X_{01}, \ldots, X_{0s}, X_{10}, \ldots, X_{1l_1}, \ldots, X_{t0}, \ldots, X_{tl_t}\}$ of generators of K over k such that

$$\delta(X_{0i}) = \lambda_i X_{0i} \ (i = 1, \ldots, s),$$

$$\delta(X_{i0}) = \mu_i X_{i0}, \ \delta(X_{ij}) = \mu_i X_{ij} + X_{ij-1}, \ (i = 1, \ldots, t, j = 1, \ldots, l_i).$$

Throughout the rest of this paper, k denotes a field of characteristic 0. For a field F and a derivation Δ of F we denote by F^{Δ} the field of constants for Δ , that is, $F^{\Delta} = \{f \in F | \Delta(f) = 0\}$.

2 Diagonal case

In this section we alway assume that $K = k(X_1, ..., X_n)$ is a rational function field over k and that δ is a k-derivation of K such that $\delta(X_i) = \lambda_i X_i$ for some $\lambda_i \in k$ $(1 \le i \le n)$.

First we recall the notion of the multidegree of a polynomial. Let $f = \sum_{\alpha \in N} n_{\alpha_{\alpha}} X^{\alpha}$ $\in k[X_1, \ldots, X_n]$ be a nonzero polynomial. The term $a^{\alpha}X^{\alpha}$ is called the homogeneous term of f of multidegree α and is denoted by f_{α} . Let \prec denote the lexicographic order of N^n . The multidegree m-deg(f) of f (with respect to \prec) is $\max\{\alpha \in N^n | a_{\alpha} \neq 0\}$, where max is taken with respect to \prec . When m-deg $(f) = \alpha$, f_{α} is called the leading term of f. We note that m-deg $(\delta(f)) \leq \text{m-deg}(f)$ because $\delta(X^{\alpha}) = \sum_{i=1}^{n} \alpha_i \lambda_i X^{\alpha}$ for a monomial $X^{\alpha} = X_{1}^{\alpha_1} \cdots X_{n}^{\alpha_n}$.

Sinece δ is a k-endomorpophism of K, we can consider eigenvalues, eigenvectors and eigenspaces of δ . We write $V(\lambda)$ for the eigenspace of δ , belonging to λ . We note that $V(0) = K^{\delta}$ and that $V(\lambda)$ is not only a k-vector space but also a K^{δ} -vector space. If $f, g \in V(\lambda)$ and $g \neq 0$ then $f/g \in K^{\delta}$. Hence $\dim_{K^{\delta}} V(\lambda) = 1$ if $V(\lambda) \neq 0$.

For a vector $m=(m_1,\ldots,m_m)\in \mathbf{Z}^n$, we have $\delta(X^m)=\sum_{i=1}^n m_i\lambda_iX^m$ and hence X^m is an eigenvector of δ and $\sum_{i=1}^n m_i\lambda_i$ is an eigenvalue of δ .

LEMMA 2.1 Let $f, g \in k[X_1, ..., X_n]$ be nonzero polynomials such that $f/g \in X(\lambda)$ for some $\lambda \in k$. Let $f_{\alpha} = aX^{\alpha}$ and $g_{\beta} = bX^{\beta}$ be the leading terms of f and g, respectively. Then we have $\sum_{i=1}^{n} (\alpha_i - \beta_i) \lambda_i = \lambda$ and $f_{\alpha}/g_{\beta} \in V(\lambda)$.

Proof. By the assumption we have $\delta(f)g - f\delta(g) = \lambda fg$. It is immediate to see that $(\delta(f)g - f\delta(g))_{\alpha+\beta} = ab\Sigma_{i=1}^n(\alpha_i-\beta_i)\lambda_i X^{\alpha+\beta}$ and that $(\lambda fg)_{\alpha+\beta} = ab\lambda X^{\alpha+\beta}$. Hence we have $\Sigma_{i=1}^n(\alpha_i-\beta_i)\lambda_i = \lambda$ and $f_\alpha/g_\beta = (a/b)X^{\alpha-\beta} \in V(\lambda)$.

COROLLARY 2.2 If $\lambda_1, \ldots, \lambda_n$ are linearly independent over Q then $K^{\delta} = k$.

Proof. We use the same notation as in the lemma with $\lambda = 0$. By the lemma $\sum_{i=1}^{n} (\alpha_i - \beta_i) \lambda_i = 0$. Hence m-deg(f) = m-deg(g) by the assumption that $\lambda_1, \ldots, \lambda_n$ are

linearly independent over Q. Since $(bf - ag)/g = b(f/g) - a \in K^{\delta}$ we have m-deg (bf - ag) = m-deg(g) if $bf - ag \neq 0$. But it is obvious that if $bf - af \neq 0$ then m -deg(bf - ag) < m-deg(f). Hence we have bf - af = 0, $f/g = a/b \in k$.

COROLLARY 2.3 Let $\lambda = \sum_{i=1}^{n} m_i \lambda_i$ be an eigenvalue of δ with $m = (m_1, \ldots, m_n) \in \mathbb{Z}^n$. Then $V(\lambda) = K^{\delta}X^m$.

The following lemma is well known (see e. g. Kunz[1] §5 Exercise 1)).

LEMMA 2.4 Let v_1, \ldots, v_n be vectors in \mathbb{Z}^n . Then the monomials X^{v_1}, \ldots, X^{v_n} are algebraically independent over k if and only if v_1, \ldots, v_n are linearly independent over \mathbb{Z} .

Now we can prove the following, which gives generators of the field of constans for a diagonal derivation:

PROPOSITION 2.5 Let $N = \{ (m_1, \ldots, m_m) \in \mathbb{Z}^n \mid \Sigma_{i=1}^n m_i \lambda_i = 0 \}$. Then $K^{\delta} = k (\{X^m \mid m \in N\})$.

Proof. We put $K_0 = k(\{X^m \mid m \in N\})$. It is obvious that $K_0 \subset K^{\delta}$. We show the opposite inclusion. Since N is a submodule of \mathbb{Z}^n we can take a basis B_0 of N. We set $M_0 = \{X^m \mid m \in B_0\}$. It is easy to see that $K_0 = k(M_0)$. Let $E = \{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{Z}^n . Then there exists a subset B_1 of E such that B_1 has (n-r) elements $(r = \operatorname{rank}(N))$ and $B = B_0 \cup B_1$ is linearly independent over \mathbb{Z} . We may assume $B_1 = \{e_{r+1}, \ldots, e_n\}$. We set $M_1 = \{X^\alpha \mid \alpha \in B\}$ and $K_1 = k(M_1) = K_0(X_{r+1}, \ldots, X_n)$. Then, by LEMMA 2.4, K_1 is a purely transcendental extension of K_0 . The restriction ∂ of δ to K_1 is a K_0 -derivation of K_1 such that $\partial(X_{r+1}) = \lambda_{r+1}X_{r+1}, \ldots, \partial(X_n) = \lambda_n X_n$. Since $\lambda_{r+1}, \ldots, \lambda_n$ are linearly independent over \mathbb{Q} by the choice of B_1 we have $K_1 \cap K_1 \cap K_2 \cap K_2 \cap K_3 \cap K_4 \cap K_4 \cap K_4 \cap K_5 \cap$

On the other hand, since tr. $\deg_k K_1 = n$, by LEMMA 2.4, $K = K_1 \ (X_1, \ldots, X_r)$ is an algebraic extension of K_1 . Hence there exists a subset I of N^r such that $M = \{M_\alpha = X_1^{\alpha_1} \cdots X_r^{\alpha_r} \mid \alpha = (\alpha_1, \ldots, \alpha_r) \in I\}$ is a basis of K as a K_1 -vector space. Note that if $\alpha \in I$ and $\alpha \neq 0$ then $\sum_{i=1}^n \alpha_i \lambda_i \neq 0$ for any $\alpha_{r+1}, \ldots, \alpha_n \in \mathbb{Z}$. Now let us take an element $f = \sum_{\alpha \in I} f_\alpha M_\alpha$ of K^{δ} ($f_\alpha \in K_1$). Then $\delta(f) = \sum_{\alpha \in I} (\delta(f_\alpha) + (\sum_{i=1}^r \alpha_i \lambda_i) f_\alpha)$

 M_{α} and hence $\delta(f_{\alpha}) + (\Sigma_{i=1}^{r} \alpha_{i} \lambda_{i}) f_{\alpha} = 0$. By LEMMA 2.1 and COROLLARY 2.3 it follows that if $f_{\alpha} \neq 0$ then there exist $\lambda_{r+1}, \ldots, \lambda_{n} \in \mathbb{Z}$ and $c_{\alpha} \in K_{0}$ such that $f_{\alpha} = c_{\alpha} X_{r+1}^{\alpha_{r+1}} \cdots X_{n}^{\alpha_{n}}$ and $\Sigma_{i=r+1}^{n} \alpha_{i} \lambda_{i} = -\Sigma_{i=1}^{r} \alpha_{i} \lambda_{i}$. Hence we have $f_{\alpha} = 0$ for $\alpha \neq 0$ and $f_{0} \in K_{0}$. This shows that $K^{\delta} \subset K_{0}$.

3 Nilpotent case

In this section we concern with the field of constants for a nilpotent derivation. Let $R = k[Y_1, \ldots, Y_n]$ be a polynomial ring over k in n variables. Let ∂ be a k-derivation such that $\partial(Y_1) = 1$, $\partial(Y_2) = Y_1, \ldots, \partial(Y_n) = Y_{n-1}$. We set

$$f_i = \sum_{k=0}^{i-2} \frac{(-1)^k}{k!} Y_1^k Y_{i-k} + \frac{(-1)^{i-1}(i-1)}{i!} Y_1^i \ (i=2,\ldots,n).$$

It is known that the ring R^{∂} of constants for δ is generated by $\{f_2, \ldots, f_n\}$ over k (Onoda [2] Lemma 1). A similar result holds for the field of constants. For completeness we state it with a proof.

LEMMA 3.1 Let the notation be as above. We write L for the quotient field of R. Then $L^{\partial} = k(f_2, \ldots, f_n)$ and $L = L^{\partial}(Y_1)$.

Proof. It is easy to see that $f_i \in L^{\partial}$ for $i=2,\ldots,n$. Since $f_i=Y_i+g_i,g_i\in k[Y_1,\ldots,Y_{i-1}]$ $(i=2,\ldots,n)$ we have $L=k(Y_1,f_2,\ldots,f_n)$. Moreover ∂ is a k (f_2,\ldots,f_n) -derivation and $\partial(Y_1)=1$. Hence $L^{\partial}=k(f_2,\ldots,f_n)$.

COROLLARY 3.2 Let $K = k(X_0, X_1, \ldots, X_n)$ be a rational function field in (n + 1) variables over k. Let $\delta = \sum_{i=1}^{n} X_{i-1} \partial / \partial X_i$ be a k-derivation of K. We set

$$f_1 = X_1/X_0$$

$$f_i = \sum_{k=0}^{i-2} \frac{(-1)^k X_1^k K_{i-k}}{k!} + \frac{(-1)^{i-1} (i-1)}{i!} \left(\frac{X_1}{X_0}\right)^i \ (i=2,\ldots,n).$$

Then we have $K = k(X_0, f_1, \ldots, f_n)$ and $K^{\delta} = k(X_0, f_2, \ldots, f_n)$.

Proof. We put $Y_i = X_i/X_0$ $(i = 1, \ldots, n)$ and $L = k(Y_1, \ldots, Y_n)$. Then $\delta(Y_1) = 1$, $\delta(Y_2) = Y_1, \ldots, \delta(Y_n) = Y_{n-1}$, $K = L(X_0)$. The restriction ∂ of δ to L is a k-deriation of L. Hence $L^{\partial} = k(f_2, \ldots, f_n)$ and $L = L^{\partial}(f_1)$ by LEMMA 3.1. Since δ is a $k(X_0, f_2, \ldots, f_n)$ -derivation, $K = k(X_0, f_2, \ldots, f_n)$ and $\delta(f_1) = 1$ we have $K^{\delta} = k(X_0, f_2, \ldots, f_n)$.

PROPOSITION 3.3 Let $K = k(X_{10}, \ldots, X_{1l_1}, \ldots, X_{t0}, \ldots, X_{tl_t})$ be a rational function field over k. Let δ be a k-derivation of K such that

$$\delta(X_{i0}) = 0, \ \delta(X_{ij}) = X_{ij-1} \ (i = 1, \ldots, t, j = 1, \ldots, l_i).$$

We set

$$S_{0} = \{X_{i0} \mid i = 1, ..., t\}$$

$$S_{i} = \{\sum_{k=0}^{j-2} \frac{(-1)^{k}}{k!} \frac{X_{i1}^{k} X_{ij-k}}{X_{i0}^{k+1}} + \frac{(-1)^{j-1} (i-1)}{j!} \left(\frac{X_{i1}}{X_{i0}}\right) \mid j = 2, ..., l_{i}\} \ (i = 1, ..., t),$$

$$S_{t+1} = \{X_{i1}/X_{i0} - X_{i+11}/X_{i+10} \mid i = 1, ..., t-1\} \ and$$

$$S = \bigcup_{i=0}^{t+1} S_{i}.$$

Then we have $K^{\delta} = K(S)$.

Proof. We put $K_0 = k(S)$. It is obvious that $\delta = 0$ on S_0 and S_{t+1} . Moreover $\delta = 0$ on S_i for $i = 1, \ldots, t$ by COROLLARY 3.2. Hence δ is a K_0 -derivation. Since $K = K_0(X_{11}/X_{10})$ and $\delta(X_{11}/X_{10}) = 1$ we have $K^{\delta} = K_0$.

4 Main result

In this section we give a set of generetors of the field of constants for a linear k -derivation when k is algebraically closed. First of all we recall the following

LEMMA 4.1 (SUZUKI [3] LEMMA 4) Let K be a field of characteristic 0, d a derivation of K. Let D be an extension of d to a rational function field K(x) in one variable such that $D(x) \in K \setminus d(K)$. Then $K(x)^D = K^d$.

LEMMA4.2 Let $K = k(X_1, \ldots, X_n)$ be a rational function field in n variables over k and δ a k-derivation of K suth that $\delta(X_i) = \lambda_i X_i (\lambda_i \in k, 1 \leq i \leq n)$. Let $L = K(Y_1, \ldots, Y_m)$ be a rational function field in m variables over K and Δ an extension of δ such that $\Delta(Y_j) = 1$ $(j = 1, \ldots, m)$. Then $L^{\Delta} = k(\{X^m \mid m = (m_1, \ldots, m_n) \in \mathbb{Z}^n, \Sigma_{i=1}^n m_i \lambda_i = 0\} \cup \{Y_1 - Y_2, \ldots, Y_{m-1} - Y_m\}) = K^{\delta}(Y_1 - Y_2, \ldots, Y_{m-1} - Y_m)$.

Proof. We put $F_0=k\,(Y_1-Y_2,\ldots,\,Y_{m-1}-Y_m)$ and $F=F_0\,(X_1,\ldots,\,X_n)$. Then the restriction d of Δ to F is a F_0 -derivation with $d\,(X_i)=\lambda_iX_i\,(1\leq i\leq n)$. Hence, by PROPOSITION 2.5, $F^d=F_0\{X^m\mid m=(m_1,\ldots,\,m_m)\in \mathbf{Z}^n,\,\Sigma_{i=1}^nm_i\lambda_i=0\})=K^\delta$ $(Y_1-Y_2,\ldots,\,Y_{m-1}-Y_m)$. By LEMMA 4.1 it suffices to show that $\Delta(\varphi)\neq 1$ for any

 $\varphi \in F$ because $L = F(Y_1)$ is a rational function field over F and $\Delta(Y_1) = 1$. Assume that there exists $\varphi = f/g$ satisfying $\Delta(\varphi) = 1$, where f and g are polynomials in $F_0[X_1, \ldots, X_n]$. Let aX^{α} and bX^{β} be the leading terms of f and g, respectively. Then we see that $\Delta(f)g - f\Delta(g) = ab\sum_{i=1}^{n} (\alpha_i - \beta_i) \lambda_i X^{\alpha+\beta} + \text{(terms of multidegree } < \alpha + \beta \text{) and } g^2 = b^2 X^{2\beta} + \text{(terms of multidegree } < 2\beta \text{)}$. Hence we have $\alpha = \beta$ and $a\sum_{i=1}^{n} (\alpha_i - \beta_i) \lambda_i = b \neq 0$, a contradiction.

Now we are in a position to prove the following, which is our main result:

THEOREM 4.3 Let k be an algebraically closed field of characteristic 0 and $K = k(X_1, \ldots, X_n)$ a rational function field over k. Let δ be a linear k-derivation of K. By LEMMA 1.1 we can take a set $\{X_{01}, \ldots, X_{0s}, X_{10}, \ldots, X_{1l_1}, \ldots, X_{t0}, \ldots, X_{tl_t}\}$ of generators of K over k such that

$$\delta(X_{0i}) = \lambda_{i}X_{0i} \ (i = 1, \ldots, s),$$

$$\delta(X_{i0}) = \mu_{i}X_{i0}, \ \delta(X_{ij}) = \mu_{i}X_{ij} + X_{ij-1}, \ (i = 1, \ldots, t, j = 1, \ldots, l_{i}).$$
We set
$$S_{0} = \{X_{01}^{m01} \cdots X_{0s}^{m0s}X_{10}^{m10} \cdots X_{t0}^{mt0} \mid m_{01}\lambda_{1} + \cdots + m_{0s}\lambda_{s} + m_{10}\mu_{1} + \cdots + m_{1t}\mu_{t} = 0\},$$

$$S_{i} = \{\sum_{k=0}^{j-2} \frac{(-1)^{k}}{k!} \frac{X_{i1}^{k}X_{ji-k}}{X_{i0}^{k+1}} + \frac{(-1)^{j-1} (j-1)}{j!} (\frac{X_{i1}}{X_{i0}})^{j} \mid j = 2, \ldots, l_{i}\} \ (i = 1, \ldots, t),$$

$$S_{t+1} = \{X_{i1}/X_{i0} - X_{i+11}/X_{i+10} \mid i = 1, \ldots, t-1\} \ and$$

$$S = \bigcup_{i=0}^{t+1} S_{i}.$$

Then we have $K^{\delta} = k(S)$.

Proof. We put $L = k (\bigcup_{i=1}^{t+1} S_i)$. Then we see that $\delta = 0$ on L and that K is a rational function field over L in variables $X_{01}, \ldots, X_{0s}, X_{10}, \ldots, X_{to}, X_{11}/X_{10}$. Since $\delta(X_{0i}) = \lambda_i X_{0i}$ $(1 \le i \le s)$, $\delta(X_{i0}) = \mu_i X_{i0}$ $(1 \le i \le t)$ and $\delta(X_{11}/X_{10}) = 1$, by LEMMA 4.2, we have $K^{\delta} = L(S_0) = k(S)$.

COROLLARY 4.4 K^{δ} is a rational function field over k.

REFERENCES

- [1] Kunz, E., Käheler Differentilas, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1986.
- [2] Onoda, N., On derivation of polynomial ring, in "Reports of the 6th Symposium on Commutative

Algebra", 1975, 227-232 (in Japanese).

[3] Suzuki, S., Some types of derivations and their applications to field theory, J. Math. Kyoto Univ., **21**(1981), 375-382.