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INTRODUCTION.

Let E(a, . . . ,a,) be a vector bundle of rank #» on an n-dimensional projective space
P” defined by the exact sequence
n
0 —— Opp —— @ Op(a)——FE (@, ..., an)—0,
=0
where a,, . . ., a, are positive integers (See Definition 1). Let T be an z-dimensional
algebraic torus. P” has a natural action of T° and becomes a toric variety. We consider
the vector bundle on P" with an equivariant torus action. It is called a torus-equivariant
vector bundle. We find a detail definition of a torus-equivariant vector bundle in [1].

We know that an indecomposable torus-equivariant vector bundle of rank »# on an »

-dimensional projective space P” is isomorphic to E(a,, . . ., a)(Dor E(ay, . . ., ap)*
(1) for some positive integers @, . . . , a, and some integer /. Hence we consider the
vector bundles E(a,, . . ., a,) () and E(ay, . .., a)* (]).

§1 Definitins and notations.

DEFINITION 1. Let @, . . ., a, (n>2) be positive integers. We define a vector bundle

Fla, ..., a,) of rank »n on n-dimensional projective space P” by the exact sequence
0——Op—L & Opta)——Ea, . . ., a)——0

such that f sends 1 to (X¢& , X&, ..., X% ) where X,, ..., X, are homogeneous

coordinates of P

DEFINITION 2. We define a numerical function g(b) for an integer b by

Larvo+rn. b it b > 0.
glh)y= " .
0 if b < 0.
LEMMA 3. Let E = Ela, . .., a,) be a vector bundle of rank n on P*. Then, for

an integer I, we have
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(1) dim H° (P" E*())=3g(l—a;—a;)— Z g(l—a;—a,—ax)

i< i<j<h

+ 2 g(l—ai_aj_ah—[lk)—“ .

(< j<h<k

2) dim H* (P, E()= 5 g(l+a)—g(D)
This lemma is proved in [2],
§2 Isomorphism of torus equivariant vector bundles.

THEOREM 4. Let a, . . ., a, and by, . . ., b, be positive integers such that 0<ay<a <
Sy, 0<b < <. .. <b, (n>2).
Assume E(ay, . . ., an)(OD=E(by, . .., by (m) then we have
G=by, a,=by, . .., a,=b, and [=m.
Proof. Pt E=E(a, ..., a,). F=E(b, ..., b,). We first prove the case of / =
m=0. Assume E =~ F. Then we have
dim H°(P", E(—k))=dim H(P", F(—k))
for a positive integer k. Since, by Lemma 3,

dim HO(P", E(- k)= g(a,—k)
(%)
dim H*(P", F(—k))=Z g(bi—k)
we have
S gla—k)= 32 g(b—h (s %)

Now we see that a,=b,. We take £=b,+1 in the equations (% ) when a, > b, then
dim H°(P", E(—k))+0, dim H°(P", F(—k))=0,
a contradiction, while we take k=a,+1 in the equations ( %) when 4, <b, then
dim H°(P", E(—k))=0, dim H°(P", F(—k))+0,
a contradiction. Hence we have a,=b,. So we prove ¢;=b; (i=mn, ... , 0) by the
descending induction on i. Assume that ¢;=b; for i>t+1. We take £=5b,+1 in the

equation (% %) when «,> b, then
3 g(a;~ b~ =3 g(b—b—1)

hence, by the inductive hypothesis, we have
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2 gla—b~1)= 3 g(b—b—1).
This is a contradiction since the left hand side is non-zero and the right hand side is zero.
While we take 2=a,+1 in the equation (* %) when a,< b, then

2 ga—a—D=3glb—a—D),
hence, by the inductive hypothesis, we have

2 gla—a~1=3glh—a—1).

This is a contradiction by the same reason. Therefore we have a,=b,. Hence, by the
induction, we have a;=b; for all :.
We now prove the case of E(/) = F(m). Since E =~ F(m—0 or E(l~m) = F
we may assume that £ ~ F(m) for m>0. Then we have
dim H°(P", E(—Fk))=dim H(P", F(m—k))
for a positive integer k. Since

dim H*(P", E(—k) =% ga,— k)

(% %k %)
dim HO(P", F(m—k)) =2 g(btm—h)
we have
_%g(ai—k):ég(bﬁm-k) (% % % %)

We first see that a,=b,+m. We take 2=5b,+m +1 in the equation (% % %) when

an> b,+m then we have

dim H°(P", E (—£k))+0, dim H°(P", F(m—£k))=0,
a contradiction. While we take £=a,+1 in the equations (% % %) when a,< b,+ m then
we have

dim H°(P”", E(—£k))=0, dim H°(P", F(m—Fk)) +0,
a contradiction. Hence we have a,=b,+m. We prove a,=b;+m by the descending
induction on 7. Assume that a,=b,+m for i>¢+1. We take k=5b+m+1 in the
equation (* % % %) when a,> b,+ m then we have

3 g(a—bi—m—1= 3 g(h~b~D.

Hence, by the inductive hypothesis, we have
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__éog(ai—bt—m—l): __éogwfbﬁn.

This is a contradiction since the left hand side is non-zero and the right hand side is zero.

While we take #=a,+1 in the equation ( * % % %) when «, < b,+m then we have
éﬂg(aﬁa,-l):ég(bﬁrm—al—l,}.

Hence, by the inductive hypothesis, we have
é)ﬂg(ai—at—l)zéog(b,-qtm—at—l).

This is a contradiction. Therefore we have a,= b,+ m. Hence, by the induction, we have

a;=b;+m for all 7. Then we have an equation
% a;= s b+ (n+1)m.
7=0 =0
Since deg E =deg F (m) we have
§; a;= § b;,+ nm.
=0 =0
Hence m =0 and «;= b, for all { Q. E. D.

§3 Isomorphism of dual torus equivariant vector bundles.

In this section, we consider the case such that £E =F*(/) where E=F(a, . . ... an)
< <a<...Z<apand F=E(b ..... b)(0<p<b <...<b,)(n>2). We note that
E—~=F*(!) means F=~E* (/) by taking the dual.

LEMMA 5. Assume E~F*(1). Then nl=3% a+ 3 b,

Proof. Since deg E = §, a; and deg F*({)=nl— § b; we have the conclusion.
=0 =0
Q. E. D.

LEMMA 6. Assume E=F*(l). Then l=a,+ b, + b.
Proof. Since
dim H(P", E(—Fk))=dim H°(P", F*([—k),
for a positive integer £ and

dim HO(P", E(—k) =2 g(a, k),

dim H*(P", F(I—k)=2g(l~k—bi=b)— 3 gU—k—bi—b,;=b)+. ..

1< h
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we have that /—%&— b,— b, <0 implies a,— £ <0. Hence we have @,<[/— b,— b,. Further-
more [—k—b,— b, >0 and [—k— b, — b, — b, <0 implies a,— £ >0. Hence we have a,>[—

by — b,. Therefore we have a,=/—b,— b, i. e. [=a,+ b, + b,. Q. E. D.
LEMMA 6. Assume E=F*([). Then [=b,+a,+ a.

LEMMA 7. Assume E=F*(]). If an—an_1>p then by— b, >p.
Proof. If p <0 then the assertion is clear because a,>a,_, and b,> b,. We prove by
induction on p. Let p>0. Since
dim H°(P", E(p—a,))=dim H®° (P", F*(I+p—a,))
=dim H® (P", F*(p+b,+b,))
and p+b,+b—b;—b;j—b,<0 (0<; < j <h) by the inductive hypothesis, we have that

éog(p —apta;)—g(p—an)

1<} 1< )<

iLe. gP)=Sgp+b+b—b—b).
1<)

Hence we have g(p+ b+ b, —b—b,)=0. This means that p+b+b —b—56<0 i e.
b, — b, > p. Q. E. D.

LEMMA 7. Assume E=F*(I). If by—b,_,>p then a—a, > p.

LEMMA 8. Assume E=F*(l). If ay—an,=p then b,— b, =p.
Proof. Since a,—a,-,>p—1 we have b,—b > p—1 by Lemma 7. Hence we have

that

p+b+b—b;—b—b,<0
for 0<i<j<h. Since

dim H(P*, E(p —a,))=dim H°(P*, F*({+p—an))

=dim H°(P", F*(p+ b+ b))

we have

mg(0)+g(p)=3gp+b+b—b—b)— 3% gp+b+b—b—b—bo+...
i<j

i<j<h

= 5 glp+b+b—b—b)

i<y
where m=# {i | a;=a,.,(0<i<wn)} . Hence this means that
p+b0+b1—bo_b220 l e. bz’—blsp
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Therefore we have b, — b, =p since b,— b, >p—1 by Lemma 7. Q. E. D.
LEMMA 8. Assume E~F*(I). If by—bu.1=p then ao—a, =p.

THEOREM 9. Assume E=F*(l) and n=2. Then
@=by, a=b, &=b, and [=a+a + .
Proof. By Lemma 6 and Lemma 6’ the following equations hold.

[=a,+b+b (1)

[=b,+a +a (2)
By Lemma 8 and Lemma 8 we can put

G=a,+p, bo+b=p (3)

From (1), (2) and (3) we have a@,=b,. We now prove ¢, =b,. Assume @ < b,. Since
dim H°(P?, £)=dim H°(P? F*(I))

we have
3 g(a)—1= 3 g(1—b—b)—g(—b—b—b).

Since, by Lemma 6,
l—b—b =@, |—b—b=a,
[—b—b=ay+a—b, [—b—b—b=a—b
we have
g(a)—1=gla+a—>b).
This is a contradiction since @ > @, + @, — b, and the definition of the function g.
Assume @, > b,. We consider F ~E*(/). Then we have a cotradiction by the same

way. Hence we have aq, = b,. Therefore ;= b, and [=ay+a, + a,. Q. E. D.

Remark. Let E be a rank two vector bundle on P2, Then E=E*(/) (/=deg E). Hence
Theorem 9 is satisfied.

THEOREM 10. When n=3, 4 there exists no isomorphism E~F*(]).
Proof. Assume E=F*(/) and #n=3. Then by Lemma 5, Lemma 6 and Lemma 6" we

have

=ay+a+a+a+by+ b+ b+ b,

=z +by+b=bs+a+a.

Hence These mean /=a,+ b,. By Lemma 8 and Lemma 8’, we can put

G=a+p, b=b+p
and
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@&=a,+q, bb=b+q.
Then
l=(@+a+a+a)+(by+b+b+b)
=gpta+@a+@+a+p+qg)+b+b+b+p)+(bi+p+q)
=a+b+3(a+b+p+q)
=ay+by+3(a+by)
=ay+ by +3L.
This means @, + b, =0, a contradiction for a, > 0 and &, >0.
Assume E=F*(]) and n=4. By Lemma 5, Lemma 6 and Lemma 6’ we have
dl=(wta+amt+ata)+bo+b+b+b+b)
l=a,+by+b=b+a+a.
By Lemma 8 and Lemma 8 we can put
aG=a;+p, b=>b+p
and
G=a+q, bi=b+q.
Then, since
l=a+by+b=a+p+by+b=a+ b+ b,
I=b+a+a=b+qgtata=b+a+ta
we have
4l=1+1+1+1
=(a,+b+b)+(as+b,+b)+(b+ay+a)+(b+a+a)
=(mt+a+amtat+a+b+b+b+b+b)+(a+b)
=4[+ (a+ bo).
This means a4, + b, =0, a contradiction for @, >0 and &, >0. Q. E. D.
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