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TORUS-EQUIVARIANT VECTOR BUNDLES
AND STABLE VECTOR BUNDLES
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Introduction.

Let T be an n-dimensional algebraic torus. Then T naturally acts on an #-dimensional
projective space P” and P” becomes a toric variety. Let E be a vector bundle on P”. We say that
E is torus-equivariant if there exists an isomorphism ¢, : ¢t *E—— E for every ¢t in T where
t : P —sP" is an action of { on P?. We know the indecomposable torus-equivariant vector
bundles on P” [3]. In this paper we consider dim H°(P”* F£) for an indecomposable torus-
equivariant vector bundle E of rank » on P? (Theorem 3.6). Furthermore we have the
conditions such that an indecomposable torus-equivariant vector bundle of rank three on P?® is a

stable vector bundle (Theorem 4.1).
§1. T-equivariant vector bundles.

Let N be a free Z-module of rank n. Let M be a dual Z-module of N. Then there is a natural
Z-bilinear map :
<, >:M X N-—L
It can naturally be extended to Mz X Nz — R where My = MR and Ny = NX®;R. We denote
@(&) =<&, @>for &in Mg and @ in Nx. Let T =T~ be an n-dimensional algebraic torus over
an algebraically closed field K defined by N, i. e.
Tn=NQK* = Homzg(M,K*)
where K * is the multiplicative group of K. Let & be in M then we define a homomorhism
e(&): T — K*
by e(&)(t) = ¢ (&) for t in T. Then we can identify M with the additive group of characters
of T. Let X = Twnemb(A) be a smooth complete toric variety of dimension » defined by a fan
A of N for which the reader is referred to [4,5,6]. Let Uc = Spec(Ac) be a T -stable affine open
corresponding to the # -dimensional cone C in A(#n) where Ac = K[C*NM]. For &in M, we
denote by A(&) the M-graded A-free module of rank one defined by A(§), = A;., Let E=

E(m, P) be a T-equivariant vector bundle of rank » on X defined by (m, P). Then we have
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E(Ue) = QAc(~£(C)0)

for some characters £(C),,..., £(C),in M (see [2]). Let VZQK[M] be a K -vector space and
let /¢, be the K-automorphism of V defined by P(C,C’) for C and C’ in A(n), i. e.
he,o(x,.0%) = (x,...,%)P(C,C").
Let
Ve= {(x,...%) €V | x, € Ac(—&(C),) for 1<{ <7}
be a subspace of V. Then we can identify V¢ with E(Uc) as a vector space. We denote by

|C| the set of fundamental generators of a cone C Then we have :

LEMMA 1. 1. Let x = (x,...%,) be in 'V and put x;, = Spie(&;) (pu+ 0) for 1 <i<r.
Then, for any Eone C in A(n), the following are equivalent -

(1) xe Ve

2) @(&) > @(—&(C)y) for every j and @ in |C| (1<i<7).

Proof. This is easy conclusion from the definition of Ac(—&(C),) and V.

PROPOSITION 1. 2. Let E be a T -equivariant vector bundle defined by (m, P) and let h¢, ¢
be a K-automorphism defined by P(C, C’). Let C be a cone in A(n). Then
H(X, E) = {xce Ve | he,c(xc) € Ve for every C' in A(n)}
Proof. Let s be in H°(X, E). Then x¢c = s | Uc € E(Uc) = Ve. By the construction of

E (see [2]) we have a commutative diagram of vector spaces

ECUc) AcrncQE (Ue) 1%
e e
E(U Acne®E(Ue) Vv

for every C and C’ in A(n), where fc,c is a patching function of E defined by P(C,C"). It is
easy to see that xc = s|Uc = fe,c(x¢) 1e. he,c(x¢) isin Ve Conversely let x¢ be in Ve such
that xc = hc,c(x¢) isin Ve, for every C’ in A(n), then {x¢|C eA(n)} can be patched up and

defines a global section of E.
§2. Subsets of M.
In this section we show some lemmas and these results will be used in the next section. Now

we first use conbinatorical result.

LEMMA 2. 1. Let b be an integer. Then the number of integral solutions of

Xty < b, x >0, ...,% >0
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is
1 . .
ﬁ(b+1)(b+2,)...(b+n) if b >0,

0 if b < 0.

glb) =

DEFINITION 2.2. Let A be a finite subset of M. we denote by v(A) the number of elemens
of A.

Let { @ ,., @} be aZ-base of N and put ¢ = —@,—— @,.

LEMMA 2.3. Let b,,...,b, be‘ integers and put
A= {&eM | (&) > b for0 <i<mn} .
Then we have v(A) = g(—by—---—b,) where g(1) is defined in Lemma 2.1.
Proof. Put x;, =@;(&) e Zfor £€in M (1< i < n). Then £ is in A if and only if x,+---+
X, < —band x;, > b, (1 < 7 < n). Puty, = x,—b; (1< i < n). Then we have
Nttty < —b——byand y; > 0 (1 < 7 <n).
Hence, by Lemma 2.1 we have v(A) = g(—by—+--—b,).

DEFINITION 2.4. Let a,...,a, be positive integers and / be an integer. Put

a; ifk =1
M= {&eMl (&) >a-1l & > o .
0 itk +1

a, itk =1

Gy = {EeM| @& > L @& > ja ifk=7 1},

0 otherwise

M; = {§ e Gyl (&) <a—1},

Let k,...,k be integers such that 0 < & <...<k, < min(jj). Put
M;; (k... k) = { & e Mylge,(&) > an,(1 < s < )}, —Mij = 0<k<U_ - M (k).
min(ij}
LEMMA 2.5. Assume that 0 < i < j, then we have
(1) v(Mp) = gll—a—a).
2) v(M;;)) = gll—a;—a)—gl—a—a,—a,).

(3) v(M(ky,.. k) = gll—awn—...—ap,—a;i—a;,)—g(l—a— Qp,— ... — Qp,— @ — Q).
) v(My) == 3 v(My(k)) — = ovMyCk,k) + = o(M;lk,kk)) — ..
O0< by < 0< &y < k< Ok <k <hk<i

Proof. These assertions are easy conclusion by applying LLemma 2.3 for each case. So we

ommit.
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By Lemma 2.5 we have the following lemma.

LEMMA 2.6. Sv(M)+2 v(M;;)— S v(M,)
;0 < ]

O<i /< 0<i<y

= 2 gll—a,—a,) — S gll—a.—a.—a;,)+ p gll—a,—a.—a;,) —...
0« 7 2 fa <. 1y

O £ L ([ RS b <

§3. Case of projective spaces.

In this section we consider the case of X = P” and a T -equivariant vector bundle £ of rank
n. Let {@i...p.t beaZ-base of N andput @ = — @, —...— @, Let P* = T, emb(A) be a toric
variety defined by a fan A where the set of n-dimensional cones of A is
JEN]
Let E be a T -equivariant vector bundle defined by the exact sequence :

0~ Op — & Op(a) —> E* — 0

7=
for positive integers @;. Then we may assume that E (/) is defined by the follwing (m, P) :
i-th
me, (@) = (0,..,0, a; ,0,..,0)  for l<i<n l<j<mu, i+j,
i-th
me (@) = (—L..,—La—1L—1..,—1) forl<i<n

and

th

~,
I

P<C0;Cz') — ’

L]
i e o Opdio o o o}

Let x = (pe(&) ,..., pne(&)) be in V., Then we have

n {--th
he,o(x) = @16(&),..-,;lpke(fk),-.--, Pne(&n))
for 1<7< n where & ,. is a K-automorphism of V defined in §1.
DEFINITION 3.1 .For & in M we define
7-th
si(&) = (0,..,0, e(£), 0,..00 (1 <7 <n),

i th i-th
si;08) = (0,...0,e(&), 0,..., 0,—¢(&£),0,..,00 (1< i <) < n)

and
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W = {se Ve | hgc(s)eVetfor 1 <4 <mnj.

LEMMA 3.2.
(1) s;(&) € W if and only if & € M,
(2) ;&) € W if and only if & € Gy,
where M; and G;; are defined in Definition 2.4.
Proof. we first prove (1). It is easy that s;,(&) e W if and only if s;(&) € V, and
he,e (s:i(&)) € Vi forl < j < nm. These means, by Definition 2.4, that
a if j =1
w (&) > a-l, @;(&) > . (1< < mn)
0 if j o+ 1

i.e. & is in M;. The second assertion is proved by the same way.

LEMMA 33. {s;(&)|6 e M} (1< i<mn and {s;(& | §e Gy (1<i<j<n)
genervate W as a vector space.
Proof. we may only prove that x = (pe(#7,) ,..., Pre(n.)> in W is generated by s; and s;;.
Put x = x,+...+x, where
x; = (pne(&),...pme (&) (A < i < k)
and & + & if i + j. It is easy to see that x is in W if and only if x; isin W for 1 < ¢ < k.
Hence we may assume
x = (pe(&),...0ne(8)).
Now assume p, +...+p, * 0 then the condition k¢, (x) € V¢ for 0 < ¢ < » means that
(&) > a-l and @;(§) < a (1 < i < n).
Hence we have x = p5(&)+...+ppsn(&). Assume p;+..+p, = 0 then the condition k¢ (x)

e Ve for 0 < i < » means that

a if p. # 0
(&) > —1I, and @;(§) > ) (1< ¢ < n).
0 lf pi - 0
we denote non-zero p; by pi,,....p:, then we have

X = puSii(E)+ ..+ pi Si i (8).

Therefore W is generated by s; and s,;.

LEMMA 3.4.
(1) Assume that & is in Gi;— M; and @ (&) > a-1 for some i, j (i < j), then we have
that s;(&) and s;(&) are in W and s;;(&) = s;(§)-—s;(&).
(2)  Assume that & is in M;0 My My, = M;(k) for some 0 < k < i < j, then we have
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that s;;(&), $x:i(&), and s,;(&) are in W and s,;(&) = $,;(&) —sp(E)
Proof. By Lemma 3.2 and Definition 2.4, the assertions of the lemma are true.
By Lemma 3.4, we can consider {s,(&)|& e M;} (1< i < »n) and {s;,;(&)|& e M,

(1 < i < j < n) as generators of W.

LEMMA 35. {si(&)|& e M} (1< i <j<n)and {s;(&E)|& e M;- M, (1< i<j
<n) are linearly tndependent.
Proof. We consider the linear combination of s, and s,,, Decompose it into same degree then

we may prove that the linear combination
2a;s,(&) + 2 bysi; (&) =0
1 . 1<

such that & isin M; if a; + 0 and & is in M;; — M, if b; + 0, imply @; = 0 and 4,, = 0 for all
i, j. We prove first all ¢; = 0. Assume a, #+ 0 for some % then there exists % such that b,, +
0 (A< k) or by + 0 ( k< k). If h < k then interchange % with £ so we may assume b,, + 0
(k<h). Hence & is in M, and in M,, — M,,. This means, by the definition of M, and M,,, that
P (&) > a-l and @ (&) < a-1, a contradiction. Hence all ¢, = 0. Now assume that S b;,s,,
(&) = 0and & isin M,; — M,, if b, + 0. Suppose that b,, + 0 for some % and % (k< h). Since
k-th and /-th components of s,,(&) are not zero, there exists ¢ (¢+k, k) such that &,, + 0 (¢ >
h) or by, # 0 (¢t < h). Incase t > h, we have & is in M., and in M,, hence & is in M,, (k) C
M, a contradiction. Incase # < t < h(or t < k) we have, by the same way, that & is in M,,

(k) CM,, (or My,(t) M, a contradiction. Therefore we have all b,; = 0.

THEOREM 3.6. Let E be vector bundle of rank n on P* defined by the exact sequence
0 —Ops D Opila) —> E* — ()
=0

such that f sends 1 to (X&,...,.X%) where X,,..., X, are homgeneous coovdinates of P" and a; are

positive integers. Then we have

dim H*(P"LE()) = Sgll—a;—a) — = LEU—a—a—an

<] i< j<

+_ 2 g(l—di—aj—dk*ah)g...

i< j<hk<h

where

o [ B b2y Chtm) if b0,

0 if b < 0.

Proof. By Proposition 1.2, dim H*(P,E(/)) = dim W. Since we know the base of W, we
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have the conclusion by Lemma 2.6.
§4. Stable vector bundles of rank three on P3.
THEOREM 4.1. Let E be a vector bundle of rank three on P? defined by the exact sequence

0 — OP-‘ —_— é’)Ow(d,‘) — EF* — ()

i
for positive integers a;. Assume that 0 < ay < @ < a, < a; then the following are equivalent :
(1) E is a stable vector bundle.
2) 26 < a +a + a4 and @ + & < 2(aq + a).
Proof. Since E is a vector bundle of rank three on P?, we know that E is stable if and only
if H°(P® E.orm) = 0 and H(P? (E*)uorm) = 0 where E,,n and (E*),.,m are normalized

vector bundles. From the exact sequence
0~ Op(—1) — BOp(a—1) —> E*(~1) — 0
we have
0 — H°(P3,0p(—1)) —> I@)H“(P”, Op(a;— 1)) — H°(PLE*(—1D) —> 0.

Hence H°(P3, E*(— 1)) = 0 if and only if @z—/ < 0.
Put a = (@+a+a+a) mod 3, k= (ay+a,+a+a—a),”3 and

0 ifa =0,
B = 42 ifa = 1,
1 ifa = 2.

Put! = (wta+a+a+B)3 = Bk+a+p),3 then E*(— ) is a normalized vector bundle.
Hence
H'(P?, E* (D) = 0= a </
<> 3@ < 3k + a + B
<> 3 <3k + «
<> 2 < @ + & T &

Now we see the another condition such that H°(P?, E,,,,,) = 0. Since g(x) in §2 is not
decreasinig function, by Theorem 3.6, that H°(P®, E(/)) = 0 if and only if /—a —a, < 0. Put
a = (wt+a+a+a) mod3 and [ = (e+a+a+a;—a), 3 then E(!) is a normalized vector
bundle. Hence

H (P E(D)) = 0<—— [ < a +
<> 3 < Ha + a)
<> 3+ a < 3a + a)
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> o + a{2a + a).

Therefore we have the conclusion.
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