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Introduction.

Let T be a two dimensional algebraic torus over an algebraically closed field K. Then P?
has a natural action of 7" and becomes a toric variety. Let E be a vector bundle on P2 We say
that E is T -equivariant if, for every K -rational point { of T, there exists an isomorphism
fi : t*E —— E where { : P2 —— P? is the action of # on P?2. A T -equivariant vector bundle has
a T -liniarization (see Definition 1. 2 and [1]). We consider a T -equivariant vector bundle on
P2, We know indecomposable 7T -equivariant vector bundles of rank two on P? in [ 1 ]. In this
paper, we generalize this method and classify indecomposable 1" -equivariant vector bundles of

rank three on P2
§1. Preliminaries of T -equivariant vector bundles.

Let N be a free Z-module of rank #n and let M be the dual Z-module of N. Then there is

a natural Z-bilinear map
<, > M xN-—LZ

It can naturally be extended to My X Ng —— R where My, = MX,R and N, = N®,R. We
denote @ (&) = (&, @) for £in My and @ in Ng. Let T = T, be an n-dimensional algebraic
torus over an algebraically closed field K defined by N i.e.,

Ty = N®,K* = Hom,(MK*)
where K* is the multiplicative group of K. Then we can identify M with the additive group of
characters of T. Let X = T,yemb(A) be a smooth complete toric variety of dimension » defined

by a fan A of N for which the reader is referred to [3, 4].
DEFINITION 1.1. An equivariant vector bundle £ on X is a vector bundle on X such that
there exists an isomorphism f, : {*£ —— FE for every K -rational point ¢ in 7. where

t : X —> X is the action of { on X.

DEFINITION 1.2. An equivariant vector bundle £ = (E, f,) is said to be T -linearized if
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fier = Lol * () holds for every pair of K-rational points ¢, ¢’ of T, where
? %k
fieo = fet o B LI e T g

In [1], we showed that an equivariant vector bundle necessarily has a T -linearization. We
also studied how to describe T -linearized vector bundle in terms of fans, as we now recall. Let
A be a fan of N and we denote by A(/) the set of an /-dimensional cones. For C in A(/), there
exists a finite subset {¢, ..., @/ of N and C = Ryp+... +Ryp, where R, is the set of non
-nagative real numbers. We say that {¢,, ..., ¢} is the fundamental system of generators of
C if ¢; are primitive i.e., @, is not a non-trivial integral multiple of any element of N. The
fundamental system of generators { @, ..., @} of C is uniquely determined by C and is denoted
by |C|. We consider the following :

(IDm:{|C| | C e A} — LV
sending @ to m (@) ={m(@);,..., m(@),}, and for every C in A(n),

me | C| —— ZY7

so that there exists a permutation r = 7. such that

me(@) = (me(@)r, ..., me(@)) = (m(@)pyy, ..., m(@)o, }
for every ¢ in [C|.

Let C be an n-dimensional cone in A(»n). Then we have a set of characters {£(C),, ...,
&(C),} in M by solving, for each 1 < 7 < 7, the equations ¢ (&(C),) = m.(@), for every ¢ in
|C|. Then it is easy to see that ( I ) is equivalent to the following :

(1) &:An) —> MY
sending C to &(C) = (&(C)y, ..., E(C),) such that there exists a permutation r = 7. for every
pair of cones C and C’ in A(n), so that @(&(C),) = @(&(C’),.;,) for every 7 and every ¢ in
|cin|c’|.

(ID P A(n) X A(n) —> GL,(K)
sending (C, C’) to P(C, C") = (P(C,C");; such that P(C, C");; + 0 only if 9 (&(C);) >
@(&(C");) for every @ in |C|N|C’| and that

P(C, CHPC, C”) = P(C, C
for every C, C’, C” in A(n).

For (m, P) defined by (1) and (II), we denote by E (m, P) the T -linearized vector bundle

obtained from (m, P). We refer the reader to [4] as for the construction of the T -linearized
vector bundle £ (m, P).
(III) Two pairs (m, P)and (m’, P’) defined by ( 1) and (II) are said to be equivalent if there

exists a permutation r = 7. for every C in A(#n) such that
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(me(@di s ..., me(@)r) = (me( @)y > - o, me(@)y,)

for every @ in |C| and if there exists
6:An) — GL.(K)

such that ¢(C);; + 0 only if @(&(C)) > @(&(C),) for every @ in | C | and such that
P(C C) = a(C)'P(C CHo(CH

holds for every C and C’ in A(n).

THEOREM 13. Let X = T,emb(A) be a smooth complete toric variety defined by a fan

A. Then the set of T -linearized vector bundles of rank » up 7T -isomorphism corresponds

bijectively to the set of (1) (or (1)) and (II) up to the equivalence (III).

REMARK 14. Let D, be the divisor corresponding to the cone Rop in A(l). Put m, =

m (@) where m is defined by (1) inthe case » = 1. Let P(C, C’) = | for every C and C’ in
A(n). Then the T -linearized vector bundle £ (m,P) is the line bundle OX(——qu,Dw), where the

summantion is taken over ¢ in {|C| | C € A(D)}.

REMARK 15. Let E = E(m,P) be the T -linearized vector bundle of rank » defined by
(m,P). Then E®OX(—Em¢D¢) is T -isomorphic to E(m’, P), where

m’ (@) = (m(ph+m,, ..., m(@),+m,)
for every @ in {|C| | C € A(D)}. The dual vector bundle E* is T -isomorphic to E(—m, ‘P~1),
where

‘PG C) = 'PCCHT!
and

—m(@) = (=m(@), ..., —m(@),)

for every @ in {|C| |C € A(D)}.
§2. T-equivariant vector bundles on P2,

Let N be a free Z-module of rank two. Let {¢,, @} be a Z-base of N and put @ = — ¢, —
@, and

C =R + Ry, C" = Ry + Rogy, C” = Rygy + Rogpy.
Let A be a fan of N defined by {g,, @, @} 1. e,

A2 = {C C, C"}.

Then P? = T,,emb(A). From now on we restrict ourselves to the case P?.

LEMMA 2.1. Let £ = E(m,P) be an T -equivariant vector bundle of rank » on P? By
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rearranging {&(C);}, {&(C"),} and {&(C”),} and replacing (m, P) by an equivalent pair, we
may assume that

(1) P(C, C”) is an upper triangular matrix.

20 P(C,Cy=1forl <i<r

(3) P(C, Chru=1 forl <i<r

4 @(EC)) > @(EC)) > ... > ¢(&(C)).

(5) @(&(C)) = @(§(C")) forl <7 < 7

6) @(&(C)) = @(&CH,) forl <7 < 7

Proof. By rearranging {£(C);} and {&(C”),} we may assume P(C, C”),;; + 0 for]l < <
. Then, since @ (&(C),) > @(&(C”)) for 1 < i < 7, we have @ (&(C),) = @(&(C"),) for
1 < i < #»by (I)inS§l. Suppose P(C, C")u # 0 and P(C, C”)pn = 0 for some h > k, then,
by interchanging &£(C), with £(C), as well as £(C”), with £(C”),, we have P(C, C") . = 0
and P(C, C”)un #+ 0. Suppose P(C, C")pp = 0and P(C, C”)pp + 0 forsome h, k ( h > k) then
we have @(&(C)y) > @(&(C7)) and @(5(CH) > @(§(C7),), hence @(&(C),) =
@ (E(CH). If g (&C),) < @(&(C),) then we interchange &(C), with £(C),. So we have

@ (§(Chpn) > @(&§(C)H). We define 6(C) = (a(C),,) by

1 for 1 =7,
6(C>ij — c * 0 for Z. :h, j :k,
0 otherwise,

and replace (m, P) by an equivalent pair using this ¢ (C). Then we can reduce ourselves to the
case P(C, C"),. = 0. After finite times, we will reach an upper triangular matrix P(C, C”).
Hence (1), (4) and (5) are satisfied. Since det(P(C’, C)) + 0, by rearranging {£(C"),}, we have
P(C’, C),;; + 0 for every 7. Hence (6) is satisfied.
Furthermore by replacing (m, P) by an equivalent pair, we may assume that P(C, C”);; =
I and P(C’, C);; = 1for1 < i < r. Hence (2) and (3) are satisfied.
Q. E. D.

PROPOSITION 2.2. Let E = E(m,P) be a T -equivariant vector bundle of rank » (» >
1) on P?. Suppose that there exists an integer % such that

@ (E(CH = @(EC)), @(E(C)n) = @(&(C)), @(&E(C)n) = @(EC"),)
and @,(£(C),) is a maximal element in {@,(&(C)1), ..., @(&E(C)D}.
Then we have E = LMOE’ where L is a T -linearized line bundle and E’ is a T -linearized vector
bundle of rank »-1.

Proof. By Lemma 2.1 we may assume %2 = 1. Put
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1
b
P(CC)y = | %
br
then
1
o by
P(CC") = P(C, OPCC™) = | %
br

Assume p, + 0 for some £ > 2, then we have
@ (ECH > @(EC)) = @(&CH),
@ (E(CH) > @(&C")) = @(§(C)H).
Then we define ¢(C’) = (¢(C’);;) by
1 for 1 = j,
o(CY;; = ¢ +0fori =4k j=1,
0 otherwise,

and replace (m,P) by an equivalent pair using this ¢(C’). Then we can replace ourselves to the

case p, = 0. Doing the same we have p, = ... = p, = 0.
Now put
1l ¢...q
0
P, C) = | *
0

Assume g, # 0 for some £ > 2, then we have @,(£(C"),) > @.(&§(C),) hence @,(§(C);) >
@ (&(CHw). Since @ (§(CH) > @i(E(C),), we define o(C) = (a(C)y;) by

1 for i = j,
6<C>U - c * 0 fOI' l. = l,j - k,
0 otherwise,

and replace (m, P) by an equivalent pair using this ¢(C). Then we can reduce ourselves to the

case ¢, = 0. Hence we have ¢, = ... = ¢, = 0. Put
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l & d,
1
P(C C") = *
0 1
then we have
1 d...d,
0
PC’, C” = P(C, CHP(C, C) = *
0

Assume d, # 0 for some & > 2, then we have

@ (&(C)) > @ (5(C”),) and @ (E(CH1) > @o(§(CT)0).
Hence we have

@ (ECT)D) > @ (E(C7)) and @ (5(C")10) > @(§(C7)0).
We define ¢(C”) = (a(C”),;) by

1 for i = j,
o(C”),; = c +x0fori =17 = &
-0 otherwise,

and replace (m, P) by an equivalent pair using this o (C”). Then we can replace ourselves to the
case dy + 0. Henced, = ... = d, = 0.
Thus we have that P(C’, C), P(C, C”) and P(C” C’) are of the form

10...0

0

0
This means that £ = LEE".
Q. E. D.

COROLLARY 2.3. Let E = E(m, P) be a T -equivariant vector bundle of rank » (» > 1)
on P2, Suppose that there exist an integer % such that

@ (ECH) = @(&(C)0, @u(E(C)) = @(§(CT)), @(&(C)) = @(&5(C7),)
and ¢, (&(C),) is a minimal element in {@,(&(C),) , . . ., @ (ECCH}.
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Then we have £ = L@E’ where L is a T -inearized line bundle and E’ is a T -linearized vector
bundle of rank »-1.
Proof. We consider the dual 7 -equivariant vector bundle then we can apply Proposition 2.2.

Q. E. D.

From now on we consider a 7T -equivariant vector bundle of rank three. Put
m(§) = me(p) = (4, @, &) (@ > ; > a),

me(@z) = me (@) = (b, by, by).

me (@) = (G, &, G), Me-(@) = (c1, ¢3, C3).

We note that the two sets {¢, ¢, ¢} and {c}, ¢5, ¢i} are same sets.

LEMMA 2.4. Assume that two elements of {a, @, @} are equal integers. Then FE is
decomposable.

Proof. Now we assume ¢, = @. If ¢, = ¢} or ¢ = ¢; then £ is decomposable by Proposition
22. If ¢ = ¢3 or ¢, = ¢ then we interchange &(C”), with £€7C”),. Thus we can apply
Proposition 2.2. Hence E is decomposable. Assume @, = a; then we can apply Corollary 2.3.

Q. E. D.

By rearranging {&(C"),} (resp. {&(C”);}) we can apply Lemma 2.4 for ¢, (resp. ¢). i. e,
two elements of {b,, b, by} (resp. {c¢, ¢, ¢}) are equal then E is decomposable. Therefore we

assume that, for every i (0 < i < 2), {m (@)1, m(@,)., m(p;)s} is the set of different integers.

LEMMA 2.5. Assume that ¢, > @ > @ and b, > b, > b;. Then E is decomposable.
Proof. In this case, P(C’, C) and P(C, C”) are upper triangular matrices. Hence E is
decomposable by Corollary 3.3 in [3].
Q. E. D
COROLLARY 2.6. Assume that one of following conditions
(1) @ > & > a and ¢} > ¢; > c3.
(2) {b, b, by} and {¢, ¢, ¢} are the same order.

holds. Then E is decomposable.

LEMMA 2.7. Assume that there exist 2 such that
(1) b, < b; for every i + h.
(2) ¢n < ¢; forevery i + h.
(3) ¢ F Ch
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Then P in (m, P) does not exist.

Proof. Since b, is the smallest number, we have

. [ F 0 forj = h
P(C, Cn; | )
=0 forj #+ A

Furthermore, since P(C, C”) is an upper triangular matrix, we have

P(C’, C")pp = (P(C’, COYP(C, C"))pn *+ 0.

Hence ¢, (£(C)y) > @o(&(C”),). This is a contradiction since ¢, is the smallest number and

Ch * C,h

COROLLARY 2.8. Assume that there exist # such that
(1) b, > b, forevery i + h
(2) ¢ > ¢ forevery 1 + h.
(3) ¢n F Ch

Then P in (m, P) does not exist.

LEMMA 2.9. Assume that there exist % such that
(1) b, < b; forevery i < h.
(2) ¢ < Che

Then P in (m, P) dose not exist.

Proof. By the condition (1) we have

+ 0 forj = h

PLCS o { — 0 forj < h

Q. E. D.

Since P(C, C”) is an upper triangular matrix we have P(C’, C”) ., + 0. This is a contradiction

to (2).

COROLLARY 2.10. Assume that there exist % such that
(1) b, > b, for every i > h.
(2) ¢h > Cn

Then P in (m, P) does not exist.

Q. E. D.

COROLLARY 2.11. Assume that ¢, < ¢; or ¢¢ > c3. Then P in (m, P) does not exist.

Proof. We apply Lemma 2.9 or Corollary 2.10 for the case # = 1 or & = 3.

Q. E. D.
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Now we can caluculate » in (m, P) for an indecomposable T -equivariant vector bundle of
rank three on P?. Furtheremore we caluculate P in (m, P) and consider the indecomposable case

then we have :

THEOREM 2.12. Let E = E(m, P) be an indecomposable T -equivariant vector bundle of

rank three on P2. Then (m, P) is T -equivalent to one of the following table.

(@, @, @) (b, bs, by) (a, & &) (c1, €3, C3) PC, O P(C C

1 0 0 1-1 0

(m, I, s (s, m, 1) 10 0 1-1

1 1 0 0 1

1 0 0 1-1-1

(I s, m) (s, m, ) 1 10 011

1 01 0 01

1 00 1-b6 -¢

(s, m, [) (s, m, ) a1l 0 0 1 -ac

1 5 1 0 0 1
c=(1-ab)™!

0 0 1-1-1

(, m, s) (L, m, sy (s, I, m) 10 010

111 L0 0 1

1 0 0 1 01

(m, s, 1) 1 10 0 1-1

01 1 0 0 1

1 0 0 1-1-1

(s, §, m) (L, s, m) (s, m, 1) 111 010
1 0 1 0 0 1]

1 10 1 0-1

(m, s, 1) (m, I, s) (s, m, D 01 0 011
0 1, 0 0 1

Here s (m, [ resp.) means the smallest (middle, largest resp.) integer.
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