43

Line Bundles on a Hyperelliptic Curve
by

Tamafumi Kaneyama

§1 Introduction

Let X be a hyperelliptic curve of genus g= 2 with a double covering f : X—P where P
means the one-dimensional projective space P} over the algebraic closed field . This double
covering f is defined by the linear system of dimension one and degree two on X. Let L be a line
bundle on X. Since f is a finite morphism of degree two, the direct image f,L of L is a vector
bundle of rank two on P. Furthermore since every vector bundle on P is direct sum of line
bundles, we can write f+L=0p(a)®O0x(b) (a=b). In this paper we study the decomposition of
foL.

§2 Notations and some preliminary results

DEFINITION 2.1 A curve X is called. hyperelliptic if the genus g of X is g= 2 and if there
exists a finite morphism f : X — P of degree two where P is the one-dimensional projective space
Pi.

In this paper we denote the one dimensional projective space by P. Since we use properties
of line bundles on P and their cohomological groups, we state some results on a projective space

P. This is a part of Serre’s theorem that is stated on general projective space.

PROPOSITION 2.2 Let P be a one-dimensional projective space. Then

(1) HP, Oe(r)=10 if r=-—1
2) HYP, Ge(r))=10 if r=z—1
(3) dim H(P, Oo(r))=7r+1 f r= 0

(4) dim H'(P, Ge(r))=—7r—1 if r<—2
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§3 Direct image of line bundles

We state at first the dimect image £, L in case of L= and L= K. This case is completely

described. The results are the following proposition.

PROPOSITION 3.1 Let X be a hyperelliptic curve of genus g (g=2) and let f: X—P be a

double corvering then
(1) f.O0x=0:®0:(—g—1)
(2) f+Kx=0p(g— 1)DO0»(—~2)
where Ox is the structure sheaf of X and Ky is the canonical sheaf of X.

proof Since f . X—P is a finite morphism of degree two, the direct image f.L of a line

bundle L on a curve X is of the form
f+L=0p(a)®DO0p(b) (azb)
where a, b are integers. Since f is a finite morphism, we see by using spectral sequence that
dim H'(X, L)=dim H(P, f+L) fori=0, 1.
By using Riemann-Roch theorem to the line bundle L, we have
dim H°(X, L)—dfm H'(X, L)=deg L+ 1 —g.
This is a special case of Riemann-Roch. Therefore we have
dim H°(P, fo.L)—dim H'(P, f«L)=deg L+ 1 —g.
On the other hand
dim H°(P, f.L)—dim H'(P, f.L)
=dim H°(P, Op(a))—dim H'(P, Op(a))
+dim H°(P, Op(b))—dim H'(P, Op(b))

=(a+1)+(b+ 1)
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=a+b+ 2.

Then we have

a+b=deg L—g—1.
(1) In case of L= 0.

We know the dimension of cohomological groups of X. Therefore
dim H°(X, Ox)=dim H°(P, f. O
=dim H°(P, Or(a))+dim H°(P, O (b))

is equal to one. On the other hand we also know the dimension of cohomological groups on P by
Proposition 2.2. So the integers a and b satisfy that a= 0 and < — 1. By using the equality
a+b=g— 1 that is stated above, we have b=—g— 1. Therefore

f.0x=0sD0pr(—g—1).

(2) In case of L= K.

We do the similar way. Since
dim H'(X, Ky)=dim H'(P, f.Kx)
=dim H'(P, Op(a))+dim H'(P, Ox(b))
=dim H°(P, Op(—a— 2))+dim H°(P, Op(—b—2))
is equal to one. Again by uning the dimension of cohomological groups on P, we have
—b—2=0, —a—2=-1
since a=b. In this case, the equality which is stated at first is a+b=g— 3. This implies that
a=g—1, b=—1.
Therefore
fKx=0r(g—1 )®0p(; 2).

The proof has done.
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CORORALLY 3.2 Kx=f*Or(g— 1)
proof Put L=f*0O:(g— 1). By the projection formula
S+L=/,(0x®L)
=f.0x®0r(g— 1)
= {0:@0p(—g— 1)} ®Or(g—1)

=0r(g—1)D0(—2).
If L is not isomorphic to the canonical line bundle Kx, the dimension of a cohomological group
H° (X, L) does not equal to & On the other hand since g= 2 we know that
dim H°(X, L)=dim H°(P, f,L)
=dim H°(P, Op(g— 1)) +dim H(P, Os(—2))
=g
This is a contradiction. So we have Kx=~f*O,(g— 1).

QE.D.

Put M = f*0,(1). Since M is of degree two and the dimension of H °(X,M)is two, M defines
the double covering f : X—P.

The canonical line bundle Ky determines the morphism % from X to the (g— 1 )—dimen-
sional projective space P¥'. This morphism is called a canonical morphism. This canonical
morphism is obtained by f and (g— 1)-ple embedding of P* into P¥' so that the diagram

h

X pe-i

Pl

is commutative. This result is clear by using the fact which is stated above. [See 2]
DEFINITION 3.3 Let X be a hyperelliptic curve and let L be a line bundle on X. We define
the integer m (L) by
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m(L)=min {m | H(X, LQM™ +* 0}

where M=f*0p(1) and f : X—P is a double covering.
PROPOSITION 3.4 Let L and N be line bundles on a hyperelliptic curve X of genus g
(g=2). Then
1 1
(1) -5 deg L=< m(L>§?(g+ 1 —deg L)
2) m(LQN)Sm(L)+m(N)

proof Before prove the fact (1), we state general results. Let L be a line bundle on X.

Riemann-Roch theorem for L

dim H°(X, L)—dim H'(X, L)=deg L+ 1 —g
implies

dim H°(X, L)=deg L+ 1 —g&.

Therefore if deg L>g— 1 then dim H°(X, L)=1. In other words, H° X, L)= (0 implies
degL<g—1.
Now we want to prove the fact (1). Since H°(X, LM ™)+ (0, the degree of LM ™" must

be non-negative, i.e.
deg LOM™=deg L+ m(L)deg M
=deg L+ 2m(L)=0.
| From the minimality of m (L) such that H°(X, LM ™)+ 0, we have
H (X, LM™)H=19.
The fact that is stated above induces the inequality
deg LM™V'=deg L+ {m(L)— 1} deg M
=deg L+2m(L)—2=g—1.
Combining these two inequalities, we have
—-% deg L=< m(L)é—;—(ng 1 —deg L).

Now (1) is proved. Next we prove the fact (2). Since H°(X, LM ™)+ ( we have a sequence
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0—O—LROM™",
Tensoring NQM ™™ to this sequence, we have
0 > NQM™— LN & M mLrme
On the other hand, since H°(X, N®M ™) x ( we have a sequence
0> 0x—>NRQM™

From these two exact sequences, we have a diagram

0

l

0 > Ox NRM ™

N LN R M mw+me

In the diagram, the dotted arrow is composed map s. Thismap s defines the non-zero section of

LRON@M ™™™ Then by the definition of m(LXN), we have
m(LRIN)Sm(L)+m(N).

QE.D.

PROPOSITION 3.5 Let X be a hyperelliptic curve of genus g with a double covering f . X—
P. Let L be a line bundle on X of degree d. Then

f+L=0p(=m(L)X®O0p(d+m(L)—g—1)

where m(L) is the integer defined above.

proof Put
f+L=0:(a)DO0r(b) (azb).
Then we know by Riemann-Roch theorem that a4+ b=d—g— 1. Since H(X, LROM™) %+

and
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[ (LRM™) =f ,LYOp(m (L))
=0r(a+m(L)D0e(b+m (L)),
we have
a+m(L)= 0.

On the other hand, the same argument is used. Since H°(X, LM ™) = ( by the definition of

m(L), we have
atm(L)—1=-1.
These two inequalities means
a+m(L)=0.
Therefore
b=d+m(L)—g—1.
Then we have
foL=0p(—m(L)DO0p(d+m(L)—g—1).
QE.D.
PROPOSITION 3.6 Let L be a line bundle of degree d on the hyperelliptic curve X of genus
g If deg L<g— 1 then
dim H*(X, D)S—d+1.
proof Using the inequality of Proposition 3.4, we have
d+m(L)—g—155(d—g-DS—1.
Since
dim H°(X, L)=dim H°(P, f,L)
and
fol=0p(—m(L)®0r(d+m(L)—g—1)

We have
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dim H(X, L)=—m(L)+ 1.
Again using the inequality of Proposition 3.4, we have
dim HY(X, L)g—21—d+ 1.

Q.E.D.

REMARK 3.7 There is Clifford’s theorem that is a bound on dimension of a complete linear

system of some divisor on a curve. [See 2 | We state precisely. Let D be an effective special
divisor on the curve X. Then dim |D| g—;-deg D. Above proposition is a case of hyperelliptic
curve. But Clifford’s theorem does not implies this proposition.

§4 Line bundles on a hyperelliptic curve of genus two

In this section we consider the case that X is a hyperelliptic curve of genus two. We embed
X into its Jacobian variety /. Let x be a point of X. Then the point x is considered as the point

of /. Then we write a corresponding line bundle on X by Ox(x).
PROPOSITION 4.1 Let X be a hyperelliptic curve of genus two and let f . X—P be a double
covering. Let L be a line bundle on X. Then
(1) deg L=0
(@) if L=Ox then f,L=0:,®0:(— 3),
() if L¥Ox then f,L=0s(—1)DO0p(—2),
(2) deg L=1
() of L=Ox(x) for some x in X then f,L=0CD0s(— 2),
@) if L¥Ox(x) for any x in X then f,L=0p(— 1)D0p(—1),
(3) deg L=2
() if LKy then f,LL=0:(1)PO0s(—2),
(f) oif LXKk then f.L=0,®0(—1).

proof (a) and (b) are already proved in Proposition 3.1. The idea of proof is similar to that of

Proposition 3.1. We know the dimension of the cohomological group H°(X, L) for every L.
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Therefore the results are easily obtained.
Q.E.D.

REMARK 4.2 In the case of a hyperelliptic curve of genus two, we know the value m(L) by

tonsoring M" to L for suitable z.

CORORALLY 4.3 K=f*0:(1)

REMARK 4.4 Inthe case of a hyperelliptic curve of genus two, the canonical line bundle
K and M are isomorphic. Therefore the canonical line bundle K defines the double covering
f: X—P.
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