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Note on equivariant vector bundles on a ruled surface.

Tamafumi Kaneyama

§1. Introduction

Let % be an algebraically closed field of any characteristic. Let X be a complete non-singular
variety over k. We say that X is an almost homogeneous variety if an algebraic torus 7" acts on
X and X has a dense orbit. We may assume that dim(7") =dim(X). The vector bundle E over an
almost homogeneous variety X is equivariant by definition if there is an isomorphism

¢, t*ESE

for any ¢ in T where t*E is the pull-back of £ by the translation ¢ : X—X.In [2], we study
equivariant vector bundles over an almost homogeneous variety. In this paper we intend to
describe the concrete form of indecomposable equivariant vector bundles of rank 2 over a rational
ruled surface F, =P (0p. PO (m)) which is almost homogeneous under the standard torus

action.

§2. Notations and preliminaries
Let E be the character group Hom, g (T, G,) of T where G, is the multiplicative
group. Let I" be the one-parameter subgroups Hom, ¢ (G, T) of T which is the dual Z-module
of E by the pairing <, >. We extend the pairing to Q and denote
&, d>=¢(&)
where £eE¢=EX),Q and ¢el,.
For the detailed description of almost homogeneous varieties, we refer to [3],[4].
Let X be an almost homogeneous variety defined by a cone complex (I", C). We define the
data (m, P) as follows:
() m Sk (C) = C'= {¢), -, po} =LY
sending ¢ to m(¢p) = (m(p),, -+, m(¢p),) where SEN(C) is a set of
1-dime-nsional cones of C, and for every C in C"
me : CNSkHC) »Z°7
so that there is a permutation z such that
me(4) = (mc($)r, -+, mc(8)r)
= (m(B) zvy. - m(B) r(ry)
for every ¢ in C n SkXC).
or equivalently

i) §:CoE"
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sending C to &(C) = (&(C)1, **+, £(C),) such that for every pair of cones C, C' in C” there
exists a permutation 7 so that
$:(6(C):) = ¢;((C) rsy)
for every ¢ and every ¢, in C n C’.
(i) P:C"x C"— GL.(k)
sending (C, C’) to P(C, C’) = (P(C,C’),;) such that P(C, C);; #0 only if
me(h); =mc(P); for every ¢ in (C n C’) n Sk'(C) and such that
P, C') PC, C") = P(C, C")
for every C, C’, C” inC".
Two data (m, P)and (m ', P’) are equivalent if there exists a permutation ¢ =¢(C) in 8, such

that
(mc(¢)h Tty mc(¢)r) :(m,0(¢)0'(1)7 ) mIC(¢)O'(T))
for every C inC" and ¢ in C n Sk'(C) and if there exists

p. C">GL (k)
such that

P(C, C)=p(C)' P(C, C)p(C)
for every C and C’ in C”

Then we have the following theorem in [2] on an equivariant vector bundle over an almost
homogeneous variety. We say an equivariant vector bundle (E, ¢,) T-linearized if, for every pair
of t, t'in T

Geir =P t™ by
holds.

THeoreM 2.1 Let (X, T) be a complete non-singular almost homogeneous variety defined by a
cone complex (I", C). Then the set of T-linearized vector bundles of rank r up to T-isomorphism

corvesponds bijectively to the set of data (m, P) up to equivalence.

§3. Line bundles on an almost homogeneous variety

Let (X, T) be a complete non-singular almost homogeneous variety defined by the cone
complex (7", C) unless stated. Let D; be the divisor corresponding to ¢, in Sk'(C) ={¢1, -, da!-
Then Oy (D;) is defined by the data (m, P) where

m(g,) =—1, m(¢;) =0, (j#1¢)

and P(C, C’) =1 for every pair of C, C’ in C". This section is mostly due to T. Oda.

ProprosiTioN 3.1. Let (X, T) be a complete almost homogeneous variety defined by a cone
complex (I", C). Then the following conditions are equivalent.

() D = é m.D; is a Cartier divisor

=1

(2) D 1s principal on each T-stable affine open subset.
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(3) For every C in C, theve exists &. such that
$(&) = —m,
for every ¢; in C n Sk'(C)
proof.  (2)c>(1) is obvious.
(M (2). For C inC, let U.-=Spec (A,) be a T -stable affine open subset corresponding to
C where A, =k[e(E n C*)].
Put
M(D) = [&eE | ¢:(&) =—m., for every ¢; in C n SENC)} .
Then
M. =T(U:, OdD)) =ke (uc(D)).
Suppose D is a Cartier on U. then
Me(Ae: Me) = Ae.
Therefore we have
pD) + (7 €E| 7 +puD)CENC* I =EnC*.
Since En C* contains zero, there exists . in u. (D) and # in {7eZ | 7 +u (D)CENC*! such that
& + 7= 0. Hence
ue (D) —&ECENC*.
On the other hand since, for & in En C*,
¢ (et &) =—m;
for every ¢; in C n Sk' (C), we have
ue (D)DEAENCH.
Therefore
pe (D) =&c+EnC™.
Hence
Me=Ace(&)
This implies (2).
The equivalence of (2) and (3) is obvious.
ReMARK 3.2. If X is non-singular, then any T-stable Weil divisor is Cartier.
In fact, for every C in C, C is regular. So the equations
¢ (&) =—m;
for every ¢; in C n Sk' (C) is always solvable in Z.
Now we state the following theorem without proof.
THroreM 3.3 (Demazure) There is an exact sequence
0-5 i,;c?)lZDii Pic(X)—>0
wheve j sends &€= to div Z(e(«f)) = lZil @.(&)D; and p sends D, to Ox (D;). In particular every line
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d
bundle L on X is isomorphic to Ox(Xm.D.) for some m,.
=1
CORORALLY 3.4. Pic (X) = Z34mX)
d
Lemma 3.5. Q% ~ Ox(- 2 D).

Proof. The rational n-form of AT) which is T -invariant is unique up to scalar, i. e.
dt, dtn
AL A AR
W=7 " fn
where t; = e(&;), & are base of E.

LeMMA 3.6. Let U, be an affine open subset of X corresponding to a cone C in C. Then

HAU. O3 mD) = ®  kelé)
d(&) =—m;
$.€C n SE(C)
In particular
HX,04 5 mD) = @  ke(§)
$:(&) =—m.i
b.€ Sk'(C)

ProrosiTioN 3.7. Put Dzﬁ} m,D; and M(D)= &2 | ¢p(&) = —m;, ¢.eSkU(C)}. Then
(1) OX(D) is generated by its global sections.
(2) For every C in C, there exists & in A(D) such that
$&E) = —my for ¢ in C n SENC).
are equivalent
proof. (1)(2) Since D is a Cartier divisor, for every C in C, there exists 7. in E such that
bi(ne) = —mu
for every ¢; in C n Sk'(C) and
pc(D) =nc+2nC*
But by the assumption we have
puc(D) =A(D)+ENC™.
Since 7. is in u(D), write
e =&e + &
for & in A(D) and & in En C*. For every ¢, in C n Sk'(C)
—mi=di(ne) = Pi(&e)+ dl&e).
Since ¢{&:) =—m; and ¢:(&:) =0 we have
$i&) = —m;.
(2)(1) Since
pc(D) =&c+EnC”
and
ue(DDA(D) +ENC* D & +ENC*
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we have
ue(D) =2 (D) +EnC*.
This means that Oy(D) is generated by ke(A(D)).
For the ampleness of line bundle, we state the following theorem without proof.
Tueorem 3.8. (Oda) Let (X, T) be a complete normal almost homogeneous variety.
Put D = é m;D;. Then the following two conditions are equivalent.
(1) Ox(D) is ample.
(2)  There exists a positive integer n such that, for every maximal cone C in C, there exists &,
in E so that
¢:(&) =—nm; for ¢.eC n Sk (C)
b(&) >—mnm; for ¢;6C n SENC).
if & exists then it is umique.
CoroLLary 3.9. (Demazure) Let (X, T') be a complete non-singular almost homogeneous variety.

d

Put D = 121 m:D;. Then the following conditions are equivalent.
(1) D is very ample.
(2) D is ample.
(3) For every maximal cone C in C, the unique &, in = such that $:(&) = —m; for

$:€C n Sk'C) satisfies (&) >—m, for ¢;6C n SENC).

§4. Equivariant vector bundles of rank 2 on a ruled surface.

In this section we assume that X is a rational ruled surface F,. F,, is defined by the cone
complex (¢, ¢s, ¢s=—d1— mps, ¢s=—,), i.e. Ci=Qod:+ Q,d;,, (¢ps=¢,) are two-dimensional
cones and D;=Q,¢; are one-dimensional cones where @, is the set of non-negative rational
numbers. We denote by the same letters the T -stable divisors of X corresponding to the cone D,
. Let U, =Spec (A4,) be the T -stable affine open subset of X corresponding to C,. Let (X;;) be a
local equiation of D; on U,. Put

X, __ij

x ==

N X3J" y - XmSjX4j
We can easily see that x, y are independent of j without unit. So we take(X,,) so that x, y are

independent of j. Then
U, = Spec (k[x,¥])
U. = Spec (k [315, f,z] )

U; = Spec (k [%, % )

U, = Spec (k[x, %] )

From now on we consider indecomposable equivariant vector bundles of rank 2 on Fo. At first
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we show examples of them.
(1) Let E, be an equivariant vector bundle defined by the exact sequence
0 —>0me Orm(aDi+bD2) P OF(cDs) DOr ,(d Di) > E*— 0
where a, b, ¢, d are positive integers and f sends | to (X3 X3, X5, X&) on U,;. We consider the
data (m, P) for E,. Let e;; be defined by

*
OF,,,( "’le "sz)QU@OFm( “CDa)ezj@OFm( _dD,a)esjj‘[’OFm
on U; where f* is the dual of £ We take semi-invariant basis («,, v;) of Ei on U; as follows
U= — €11 +[Xn]a[ Xa1 ]bem v _ €21 €3
' X6 X3 X4 X1 X X3 a0 7T X4 4
Uy = — €12 _+_[ Xz2 Jb €32 v . €22 __[Xaz ]C €32
XX X X2 X12 & XS X ) X&
u zXl”IIS e __[Xquné]d €13 v _ €a3 A[Xas](: €13
: X5 2 Xas X5 X2 : Xis X3 X&X72s
md m Nd
34 Xaa X34 €24 €14 Xia Ja €24
=a - = - + .
DG [ X2 } S0 T T UXAXE [Xu X5s
Then
(xy* 0 ) [w) _[1 J xy,,, HMJ
L 0 1 LV L 0 x€ V2 J,
/<—-!%>Vb 0 u2\ } {us}
X =
0 L V2 x U3 J,
X

&
0 1"_
()
x 1 0
0 ) (us) B
A[HEBRMIE
(x™ % 0 Us 0 —1 x %y U
0 yd]{vj:[l 1}{ 0 1][%}.
Therefore we can take P of the data (m, P) for £ as follows
re.c [y Yhrcuco-(] frea -} Prca -t )
Since ¢,(x) =¢,(y) =1, ¢o(x) =¢:(y) =0 we can take x?y*? as a character of T. Let &;, #; be the
characters corresponding to u;, v; respectively i. e. for example &,
$:1(8) =di(m) =a, $i(m) =¢:(8) =0
$2(&) =p2(&) =b, o) = o) =0
$3(&2) = a(&s) =0, $alrrz) = slms) =¢
$:(&) = &) =d, du(m15) = Pulp) =0
These integers means the integers of m of the data (m, P) for E i. e.
m(g) =(a, 0), m(¢) =(b, 0), m(s) =(0, ¢), m(¢:) =(d, 0).
(II) Let E, be an equivariant vector bundle defined by the exact sequence

0_’01-‘,,1[’ OFm dD @OF (bD2+CD3 @OF,,, dD4)—"
where a, b, ¢, d are positive integers and f sends | to (X¢, X2 X§,

=x2y*.m=1. Then

-0
&) on U,. Let e; be the
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same as in . We take semi-invariant basis (#;, v;) of E,, on U; as follows

€21 [ X ]b €31 _ € [Xll Ja €31

U= b b — d Uy =
XH X3 X5 X X3 il X34 X1 fl ’
b
Uy = €22 . [ X J [ X3 ]C €32 Dy = €12 €32
2 b b 2 — - -
XL XoHX0" X2 X1 X2 & X &5
- d
€23 X33 J( €13 o 1'%de +[ X43X1”§ ] €13
Uz — T 37— T yvd €33
X X3 X3 i3’ 23 X3 i’
d d
€14 + X4 }a €24 B 34 e +[ Xas X34 ]( €24
Uz — — , 4 — 34 b
: X34 X34 X2 X5, A Xoa X2 X5

Then

AP W

Hence the data (m, P) for E,, are

re.co =} Y pcco <[} Hpcaco=[ 1 Y peac) ]
and

m(d:) =(0, @), m(¢) =(b, 0), m(gs) = (c, 0), m($s) =(0, d)

by the same way as I

i

(Ill) Let E,,, be an equivariant vector bundle defined by the evact sequence

000, 500 (@D BOr (D) DO s wlcDs+dDy) —E%, — 0

where a, b, ¢, d are positive integers and f sends | to (X%, X2Z, X§& X&) on U,. Let ¢, be the

same as in [. We take semi-invariant basis (u;, v;) of E,, on U, as follows

s = €21 +[ Xa Jh €31 vy = — €11 _{_{XU Ja €31
| ’ 1 d
axar X X3 X5 X4 X X3 X X4
Uy = €22 +[ X2z Jb €12 Dy = €32 #[Xaz} €12
2= , 2= - )
X X0 Xa2 X 1% I X X X2 X1
- : d
Ua = €23 + €13 Vs = ¢ e {:Xaz }([ Xz X135 }( €13
3= T s T va s Vs T Vv €337 -
’ X2s 2 X55X1s X1 X2s i
e €14 [XM ]a €24 D4 = 3"31‘1 e [ X X34 }d €24
4= - 4= T vd ve €34 5
X34 Xas 75’ 54 X34 X4 Xz

Then
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/(_—yﬁ>(b O}{uz} [1 O}{l : J[us}
x = m
X \-a
0o z¢) Lo o 1JLo xc(~y~) vs ),
O ] [ } { 1 OJ {xa 0} {u“}
I”l
x€ 7) -1 1 0oy Vs J,
Y }{ } { 1}{yb O}{ul}
0 0 x°¢ v ).
P)

Hence the data (m,
rency =} 1 pcc=[} rcacr =1 Yreaor=[] 7§

for E,, are

and
m($) =(0, a), m(¢:) =(b, 0), m(ps) =(0, c), m(#s) =(0,4d)
by the same way as [.
(IV) Let E,. be an equivariant vector bundle defined by the exact sequence
0 05,505 (dDi + aDy) DO s n(bDs) DO (cDy) —E%y — 0
where a, b, ¢, d are positive integers and f sends 1 to (X& X8, X X&) on U,. Let ¢; be the

same as in I. We take semi-invariant basis (u;, v;) of E\ on U, as follows
€21 _[ X2 Jh €31 v = €11 _M[Xu ]‘Aes\
~ oy 1 N
X2 X3 X1 X3 X X4 X4 X T

_ €22 X2 b €12 _ €32 Xi2 |€ €12
Uz =— mb_ , V2= — -+

U =

X Xa2 X1z XX Xta X2 XHXE
Uy = 1":15d e +[ X43X1”§ Jd €23 Ve = €33 + [ Xas JC €23
3= 7 Tyd va €13 3= ,
XgBX]a(S X23 zbs ’ Xts Xis J© X2ba
e = 3”:1;d e+ l: X4 ]a X“Xa”i Jd €24 Ve = €34 + €24
4= 14 ’ 4= E ~5b -
X34 d X34 L Xas 2b4 X3 XZbA

Then

Hence the data (m, P) for E,. are

rener (3 hreco{ ] recr [} e[} )

and

m(é1) =(0, a), m(p;) =(b, 0), m(s) =(0, ), m(gs) =(d, 0)

by the same way as I.
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Next we consider the data (m, P) for an equivariant indecomposable vector bundle of rank
2 on F,. At first we deal the case when m of the data (m, P) satisfies
me (b2) = me(¢2) =(as, 0)
and one of
(1) Me(ds) = me(ds) =(as, 0)
(2) mMmc,(ds) =mec () =(0, a3)
and one of
(@ me(Bs) =me () =(as, 0)
(8) me() =me(B) =(0, @)
and one of
(@) me () =me (b)) =(ar, 0)
(8) mc($1) =mec () =(0, @)
(o) me () =(ar, 0), mc (4) =(0, )
(d) me($1) =(0, a), me (b) =(ar, 0)
where a; are non-negative integers. If one of a: is zero then we may assume a,=0. In this case
P of the data (m, P) are

P, C) =g L),

W PC.Co =g 57 @ Pency=[2 0

Q_OL;J
NI

(@ P(Cs, Cy) :["" 5:], 8 P(Cs, Cy) [

0
P(C.. C)) :[‘é " (’; Zﬁ].

Case 1, @). In the equivalence relation we take

5 | _ab+bd’
o) =3 V) nca <[} “?] p(ca):{o aa J
1 _aa'b”+(ab’ +bd")d"”
p(C.) :{ aa’a” }
0 1
Then

P’(Cly C,) :ﬂ(C1)71P(C1, C.) P(Cz)

[a
0
P'Cs, Ci) =p(C)*P(C, o) p(C) =
’ — -1 _(a” 0
P'(Cs, C) =p(CI"PG,, € p(C) =[G 0]
From the relation
P(C,, C2) P(C, G3) P(Cs, Co P(Cay C) =}

—_
(2
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we have

) a'a'a" ! 0
P(C4, Cl):
0 d'd 'd"!

Therefore this case defines an decomposable vector bundle.
Case 1, B). We take

ab' +bd’ b’

1 : 1 = 1 0
p(cl){ dd ] p(@)z{ dJ, P(Cs)-_—[ ]
1 0 1

0

1 0
p(c4) = —C/I .
' 1

Then the vector bundle E(m, P) defined by the data (m, P) is decomposable.

Case 2, a). We take

1 —g,— 1 0 1
P(Cl)z dC/ bC, ’ P(Cz): C/ ’ P(CS):
—F 1+ 7 — 1 0
aa aa d

Then E(m, P) is decomposable.
Case 2, 8). We take

o-[! %} PO ) I T R S
pl‘o 1,/9 2_0 lvp 3"“_6 1)p~4—‘ca+cd .

Then E(m, P) is decomposable.
So we may assume that «;, is a positive integer.

Furthermore by taking

1 0 (C)”{a” OJ (C)_{a'la"‘ 0 }
p(CI)_[o J’p Yo a0 g

0 d'd 'd"!
we may assume that ]

P(Cy, C)) :[(1) 1{
m PC.c) =} 9) @ PCco=( Y]
@ PCsc)=(1 97 w pC.co=(L 9]

a'ta ta’! 0
P(C4) -

and
@ PC,C)=(§ 5.} avdr=1,
) PC, C) =(en Yu) avar=1,
© PC.C) =%, 47) brar=-1,
@ PC,C) =2, 8] brdr=-1.

Under these assumption,

LeEMMA 4.1. In the case (1, a, ¢), (1, a, d), (1, B, d) and (2, 3, d) there is no

57

equivariant vector
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bundle.
proof. Case 1, a, c¢). In this case
a” +c”(b+b +b6") b”
P(C,, C,) P(C,, C5) P(G, C) P(ICy, Cy) = [ }
c” v 0
But this contradicts to the relation
P(Cly Cz) P(Cz, C3) P(Cs, C4) P(C4, Cl) :[(1) OJ-
So this case cannot happen.
Case 1, a, d). In this case
. . c(b+b+b") b +d7(b+b+b")
P(Ch Cz) P(Cz, Ca) P(Ca, C4) P((/u Cl) - { W q" }
c

c”“must be zero. Then this is a contradiction.

Case 1, 3, d).

c"(b+b) b7{1 +c"(b+b’)}+d’”(b+b’)J

P(Cly Cz) P(Czycs) P(Cs, C4) P(Cm Cl) - { . P .
c c"b" +d

Case 2, 3, d).

. be”  b7{1 +b(c"+c" ) +bd”
P(Cly Cz) P(CZ» C3)P(C3, (/4) P(C4, Cl) —

(_/r/ bur(("/+c//)+d///

So these cases cannot happen.
Lemma 4.2. The case (1, a, a), (I, &, b), (1, B, @), (1, B, b), (I, @, a), (2, a, b),(2, B, a) and
(2. B, b) determine decomposable vector bundles.
proof. By the equivalence relation we may show that P(C,, C,.,) are equivalent to [(1) (1)}
Case 1, @, a) and Case 1, a, b). We take
o =[5 Opca <[} U [§ e [§ 0T
Then
P(Co Cio) =p(C)* p(Ci G p(C) =[§ 1] i=L 2.3

0
From the relation

P(C,, Cy) P(Cy, C3) P(Cs, Co) P(Cy, Cy) :[ : 0]
we have

PA(C., C) =p(C)™ P(C., C)) p(Cy) :[}) %

Case 1, 3, a) Since

P(C., C,) P(Cs, C3) P(Cs, Ca) P(Cs, C))
A (b AT (b)) L+ (b)Y Hd b+ b)
[ c“a” b Hd” J
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we have

c"=0,d"=1,a"=1,b+b'=0,6"=0.
We take

/)(Cl) :[(1) ?], P(Cz) :[(l) bl}f)(Cg) :p(c4) :[(1) (I)J
Then

P'(C:, Civy) =p(C)' P(Cy, Civ) p(Cisi) :[6 (H
for 7 =1, 2, 3, 4 where Cs =C,.
Case 1, 4, b) Since

\ ¢ (bHb) (ca” e (b+b)d”
P(Cl, Cz)P(Cz,Ca)P((/s. C4)P(C4. C) =

C// a ”r + Cnr d ”r

we have
c'a” ¢ =0,d" =1,a" =1, b+b =0

we take

o) =[} 9 pco =[5 4eco=[§ Y eco [ L Y]
Then

P/ (G Co) = p(C) PC Co) p(Co) =[} ] i=1,2.3,
Other cases are dealt by the same way. So we only show p(Cy).

Case 2, a, a)

o) =[3 ) aca =sco <[} ) pco =3 2]
Case 2, a, b)

o) =pC) =} V] pica =]
Case 2, 8, a)

pC) =[5 4o =[5 $)eco [ L Y e =[F 1)
Case 2, 3, b)

pc) =€) =} §)ncy [ L §)eco (L 0]

Therefore these cases determine a decomposable vector bundles.

(1) - ?]» p(Cy) :[1 +be€ ?]_1.

LemMaA 4.3. The case (1, B, ¢), (2, a, ¢),(2, a, d) and (2, B, ¢) determine an indecomposable

vector bundles of rank 2. Furthermorve P of (m, P) are equivalent to

. 8.cxPC, =} Y pc.co=[) reco=[ 1 )

revco) -1
@ a crPC.C) =} 1) PCco=[_ 1 Ypcaco=[} 1)
Pe.cy =1 1)
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2, a, d) P, Cz) =

(6 Ypecaca=[_1 ) renco [}
P(C,, C)) [(1’ -1

(i

0=(1

[y
(—

(2, 8, c); P(Cy, C) rc.co=[§ Yrecco-[ 1 9]

0

P(C4y
proof. Case 1, 3, c). Since

a”{1+c"(b+b)}+c” (b+8)  b"{1+c"(b+b)}
P(Cy, CP(C, CP(Cs, CHP(C,, C)) = [ B o J
c’a” +c c’b

we have

b” {1+c"(b+b)}=c"a” +c” =0,

a” {1+c"(b+b)} +c"(b+b)=c"b" =1,
Hence

@ =1, b4 b= —p", "= b7 = b
We take

e Y e A e

—o
JU—

Then
p(C)PC,, Cp(C) =} 9]
PCPCs, Cp(C) =(} 1)
PCPCs, Capc) =[_ 1 )
pCYPC, CpC) =[] T 1]

Case 2, a, c) Since

(1 4+b )+ {b” 1+bc)+ ” !
P(Co, COP(C. CoP(Ca, COP(C, C) = [“ (1Hb) {87 (1 4D 48} 67(1 +bc )J

C/a//l +C”r( 1 _+_Crb//) Clb///

we have
Cl:b///—.]’ b: —bll/, C”/ — _b’”—l’ a/// :1+b”b"’*l
We take

p(C) = pC) =pC) =0 Y] pico [ )
p(CYP(C., Cp(Cs) =

o 1)
P(C)'P(Cs, Cp(C) —[_ 0]
p(C3)IP(Cs, Co)p(Cl) {(1) ]
p(CYPC, Cop(Cy =[1 1]
Case 2, 8, d) Since

Then

[y
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P(Cy, C2)P(Cs, Co)P(Cs, CIP(C,,Ch)

B [c”’{b”( 1+bc")+b)  b7(1+bc)+d7{b7(1 +bc')+b}}

c”"(1+c'd") b +d”(1+c'b")
we have
C=b" b = —b", ¢ = =", d =14bb7
we take
N b AR
o) 78" B n) =pic) =pco {7 )
Then

p(CIPC,, Clp(C) =[] 9]
p(C)PC,, Cn(C) =[_ 1 9]
p(CPCs, Cp(Co =(} 1]
P(COPC, Cn(C) =[9 71

Case 2, 3, c). Since
P(Cy, CIPCy, CHP(Cs, CIP(C, C)

[ a”’{1+b(c’+c")+bc”} b7{1 +b(c'+c")}}

a”(c’+c")+c” b7 (¢’ +c”)
we have
b=—-1,0"=-b=1,c"=-b""'=-1,a"=1,c'+c"=-c"=1
We have
p(C) =p(C) =p@ <[~} $)pc {2 Y]
Then

p(C) 'P(C, Cz)P(Cz =
p(C) PGy, Co)plCs) =
P(Ca) 'P(Cs, C4)/J(C4) =

p(CI PG,y Cp(C) :[-1 - (1)}

THEOREM 4.4. Let F,, be a rational ruled surface. F,, becomes an almost homogeneous variety
with standard action of T*. Awn indecomposable equivariant vector bundle of rank 2 on F, is
isomorphic to E/(D) for some D ePic (Fn) wheve ]| is one of 1, II, lll, IV as in the examples.

proof. Since an equivariant vector bundle has a 7 -linearization we only show that the data
(m, P) defines E)(D), By tensoring Or,, ( él m.D;) for some m; with the vector bundle E(m, P)

defined by the data (m, PJ, we may assume that m of the data (m, P) are the form shown before
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lemma 4.1. By lemma 4.3 the cases that (m, P) defines an indecomposable equivariant vector
bundle are (1, 3, ¢), (2, «, ¢), (2, @, d), and (2, 8, c). Clearly these cases determine the vector bundles
E, E,, E., and E,. respectively.

REMARK 4.5. The same technique will determine an equivariant vector bundle wheve X is a

two-dimensional almost homogeneous variety.
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