Note on equivariant vector bundles on a ruled surface.

Tamafumi Kaneyama

§1. Introduction

Let k be an algebraically closed field of any characteristic. Let X be a complete non-singular variety over k. We say that X is an almost homogeneous variety if an algebraic torus T acts on X and X has a dense orbit. We may assume that $\dim(T) = \dim(X)$. The vector bundle E over an almost homogeneous variety X is equivariant by definition if there is an isomorphism

$$\phi_t: t^*E \xrightarrow{\sim} E$$

for any t in T where t^*E is the pull-back of E by the translation $t: X \to X$. In [2], we study equivariant vector bundles over an almost homogeneous variety. In this paper we intend to describe the concrete form of indecomposable equivariant vector bundles of rank 2 over a rational ruled surface $F_m = \mathbf{P}(O_{\mathbf{P}^1} \oplus O_{\mathbf{P}^1}(m))$ which is almost homogeneous under the standard torus action.

§2. Notations and preliminaries

Let Ξ be the character group Hom_{k-gr} (T, G_m) of T where G_m is the multiplicative group. Let Γ be the one-parameter subgroups Hom_{k-gr} (G_m, T) of T which is the dual \mathbb{Z} -module of Ξ by the pairing \langle , \rangle . We extend the pairing to \mathbb{Q} and denote

$$\langle \xi, d \rangle = d(\xi)$$

where $\xi \in \Xi_Q = \Xi \bigotimes_Z Q$ and $\phi \in \Gamma_Q$.

For the detailed description of almost homogeneous varieties, we refer to [3], [4].

Let X be an almost homogeneous variety defined by a cone complex (Γ, C) . We define the data (m, P) as follows:

(i) $m: Sk^1(C) = C^1 = \{\phi_1, \dots, \phi_\alpha\} \to \mathbf{Z}^{\oplus r}$ sending ϕ to $m(\phi) = (m(\phi)_1, \dots, m(\phi)_r)$ where $Sk^1(C)$ is a set of 1-dimensional cones of C, and for every C in C^n

$$m_c: C \cap Sk^1(C) \rightarrow \mathbf{Z}^{\oplus r}$$

so that there is a permutation τ such that

$$m_c(\phi) = (m_c(\phi)_1, \dots, m_c(\phi)_r)$$

= $(m(\phi)_{\tau(1)}, \dots m(\phi)_{\tau(r)})$

for every ϕ in $C \cap Sk^1(C)$.

or equivalently

(i')
$$\xi : \mathbb{C}^n \to \Xi^{\oplus r}$$

sending C to $\xi(C) = (\xi(C)_1, \dots, \xi(C)_r)$ such that for every pair of cones C, C' in C^n there exists a permutation τ so that

$$\phi_j(\xi(C)_i) = \phi_j(\xi(C')_{\tau(i)})$$

for every i and every ϕ_i in $C \cap C'$.

(ii) $P: \mathbb{C}^n \times \mathbb{C}^n \to GL_r(k)$

sending (C, C') to $P(C, C') = (P(C, C')_{ij})$ such that $P(C, C')_{ij} \neq 0$ only if $m_C(\phi)_i \geq m_C(\phi)_j$ for every ϕ in $(C \cap C') \cap Sk^1(C)$ and such that

$$P(C, C') P(C', C'') = P(C, C'')$$

for every C, C', C'' in C^n .

Two data (m, P) and (m', P') are equivalent if there exists a permutation $\sigma = \sigma(C)$ in \mathfrak{B}_r such that

$$(m_c(\phi)_1, \dots, m_c(\phi)_r) = (m'_c(\phi)_{\sigma(1)}, \dots, m'_c(\phi)_{\sigma(r)})$$

for every C in \mathbb{C}^n and ϕ in $\mathbb{C} \cap Sk^1(\mathbb{C})$ and if there exists

$$\rho: \mathbb{C}^n \to GL_r(k)$$

such that

$$P'(C, C') = \rho(C)^{-1} P(C, C') \rho(C')$$

for every C and C' in C^n

Then we have the following theorem in [2] on an equivariant vector bundle over an almost homogeneous variety. We say an equivariant vector bundle (E, ϕ_t) T-linearized if, for every pair of t, t' in T

$$\phi_{tt'} = \phi_{t'} \cdot t'^* \phi_t$$

holds.

THEOREM 2.1 Let (X, T) be a complete non-singular almost homogeneous variety defined by a cone complex (Γ, C) . Then the set of T-linearized vector bundles of rank r up to T-isomorphism corresponds bijectively to the set of data (m, P) up to equivalence.

§3. Line bundles on an almost homogeneous variety

Let (X, T) be a complete non-singular almost homogeneous variety defined by the cone complex (Γ, C) unless stated. Let D_i be the divisor corresponding to ϕ_i in $Sk^1(C) = {\phi_1, \dots, \phi_d}$. Then $O_X(D_i)$ is defined by the data (m, P) where

$$m(\phi_i) = -1, m(\phi_j) = 0, (j \neq i)$$

and P(C, C') = I for every pair of C, C' in C^n . This section is mostly due to T. Oda.

Proposition 3.1. Let (X, T) be a complete almost homogeneous variety defined by a cone complex (Γ, C) . Then the following conditions are equivalent.

- (1) $D = \sum_{i=1}^{d} m_i D_i$ is a Cartier divisor
- (2) D is principal on each T-stable affine open subset.

(3) For every C in C, there exists ξ_c such that

$$\phi_i(\xi_c) = -m_i$$

for every ϕ_i in $C \cap Sk^1(C)$

proof. $(2) \triangleright (1)$ is obvious.

(1) \Box (2). For C in C, let $U_c = \operatorname{Spec}(A_c)$ be a T-stable affine open subset corresponding to C where $A_c = k[e(\Xi \cap C^*)]$.

Put

$$M_{\mathcal{C}}(D) = \{ \xi \in \Xi \mid \phi_i(\xi) \ge -m_i \text{ for every } \phi_i \text{ in } C \cap Sk^1(C) \}$$
.

Then

$$M_{\mathcal{C}} = \Gamma(U_{\mathcal{C}}, O_{\mathcal{X}}(D)) = ke (\mu_{\mathcal{C}}(D)).$$

Suppose D is a Cartier on U_c then

$$M_c \cdot (A_c : M_c) = A_c$$
.

Therefore we have

$$\mu_{\mathcal{C}}(D) + \{ \eta \in \Xi \mid \eta + \mu_{\mathcal{C}}(D) \in \Xi \cap C^* \} = \Xi \cap C^*.$$

Since $\Xi \cap C^*$ contains zero, there exists ξ_c in $\mu_c(D)$ and η in $\{\eta \in \Xi \mid \eta + \mu_c(D) \subset \Xi \cap C^*\}$ such that $\xi_c + \eta = 0$. Hence

$$\mu_{\mathbb{C}}(D) - \xi_{\mathbb{C}} \subseteq \Xi \cap C^*$$
.

On the other hand since, for ξ in $\Xi \cap C^*$,

$$\phi_i(\xi_c+\xi) \geq -m_i$$

for every ϕ_i in $C \cap Sk^1(C)$, we have

$$\mu_c(D) \supset \xi_c + \Xi \cap C^*$$
.

Therefore

$$\mu_c(D) = \xi_c + \Xi \cap C^*$$
.

Hence

$$M_c = A_c e(\xi_c).$$

This implies (2).

The equivalence of (2) and (3) is obvious.

Remark 3.2. If X is non-singular, then any T-stable Weil divisor is Cartier.

In fact, for every C in C, C is regular. So the equations

$$\phi_i(\xi) = -m_i$$

for every ϕ_i in $C \cap Sk^1(C)$ is always solvable in Ξ .

Now we state the following theorem without proof.

THEOREM 3.3 (Demazure) There is an exact sequence

$$0 \to \mathbf{Z} \overset{j}{\to} \underset{i=1}{\overset{d}{\oplus}} \mathbf{Z} D_i \overset{p}{\to} Pic(X) \to 0$$

where j sends $\xi \in \Xi$ to $div(e(\xi)) = \sum_{i=1}^{d} \phi_i(\xi)D_i$ and p sends D_i to $O_X(D_i)$. In particular every line

bundle L on X is isomorphic to $O_X(\sum_{i=1}^d m_i D_i)$ for some m_i .

CORORALLY 3.4. $Pic(X) = \mathbf{Z}^{d-\dim(X)}$

LEMMA 3.5. $\Omega_X^n = O_X(-\sum_{i=1}^d D_i)$.

Proof. The rational n-form of k(T) which is T-invariant is unique up to scalar, i. e.

$$\omega = \frac{dt_1}{t_1} \wedge \cdots \wedge \frac{dt_n}{t_n}$$

where $t_i = e(\xi_i)$, ξ_i are base of Ξ .

Lemma 3.6. Let U_c be an affine open subset of X corresponding to a cone C in C. Then

$$H^o(U_c, O_X(\sum_{i=1}^d m_i D_i)) = \bigoplus ke(\xi).$$
 $\phi_i(\xi) \ge -m_i$ $\phi_i \in C \cap Sk^1(C)$

In particular

$$H^{o}(X,O_{X}(\sum_{i=1}^{d}m_{i}D_{i})) = \bigoplus ke(\xi).$$

$$\phi_{i}(\xi) \geq -m_{i}$$

$$\phi_{i} \in Sk^{1}(C)$$

PROPOSITION 3.7. Put $D = \sum_{i=1}^{d} m_i D_i$ and $\lambda(D) = \{ \xi \epsilon \Xi \mid \phi_i(\xi) \ge -m_i, \phi_i \epsilon Sk^1(C) \}$. Then

- (1) OX(D) is generated by its global sections.
- (2) For every C in C, there exists ξ_c in $\lambda(D)$ such that

$$\phi_i(\xi_c) = -m_i \text{ for } \phi_i \text{ in } C \cap Sk^1(C).$$

are equivalent

proof. (1) \triangleright (2) Since D is a Cartier divisor, for every C in C, there exists η_c in Ξ such that $\phi_i(\eta_c) = -m_i$

for every ϕ_i in $C \cap Sk^1(C)$ and

$$\mu_c(D) = \eta_c + \Xi \cap C^*,$$

But by the assumption we have

$$\mu_c(D) = \lambda(D) + \Xi \cap C^*.$$

Since η_c is in $\mu_c(D)$, write

$$\eta_c = \xi_c + \zeta_c$$

for ξ_c in $\lambda(D)$ and ξ_c in $\Xi \cap C^*$. For every ϕ_i in $C \cap Sk^1(C)$

$$-m_i = \phi_i(\eta_c) = \phi_i(\xi_c) + \phi_i(\xi_c).$$

Since $\phi_i(\xi_c) \ge -m_i$ and $\phi_i(\zeta_c) \ge 0$ we have

$$\phi_i(\xi_c) = -m_i$$
.

 $(2) \triangleright (1)$ Since

$$\mu_c(D) = \xi_c + \Xi \cap C^*$$

and

$$\mu_c(D) \supset \lambda(D) + \Xi \cap C^* \supset \xi_c + \Xi \cap C^*$$

we have

$$\mu_{c}(D) = \lambda(D) + \Xi \cap C^{*}$$

This means that $O_{\chi}(D)$ is generated by $ke(\lambda(D))$.

For the ampleness of line bundle, we state the following theorem without proof.

THEOREM 3.8. (Oda) Let (X, T) be a complete normal almost homogeneous variety.

Put $D = \sum_{i=1}^{d} m_i D_i$. Then the following two conditions are equivalent.

- (1) $O_X(D)$ is ample.
- (2) There exists a positive integer n such that, for every maximal cone C in C, there exists ξ_c in Ξ so that

$$\phi_i(\xi_c) = -nm_i \text{ for } \phi_i \in C \cap Sk^1(C)$$

$$\phi_j(\xi_c) > -nm_j \text{ for } \phi_j \notin C \cap Sk^1(C).$$

if ξ_c exists then it is unique.

COROLLARY 3.9. (Demazure) Let (X, T) be a complete non-singular almost homogeneous variety. Put $D = \sum_{i=1}^{d} m_i D_i$. Then the following conditions are equivalent.

- (1) D is very ample.
- (2) D is ample.
- (3) For every maximal cone C in C, the unique ξ_c in Ξ such that $\phi_i(\xi_c) = -m_i$ for $\phi_i \in C \cap Sk^1(C)$ satisfies $\phi_j(\xi_c) > -m_j$ for $\phi_j \notin C \cap Sk^1(C)$.

§4. Equivariant vector bundles of rank 2 on a ruled surface.

In this section we assume that X is a rational ruled surface F_m . F_m is defined by the cone complex $(\phi_1, \phi_2, \phi_3 = -\phi_1 - m\phi_2, \phi_4 = -\phi_2)$, i.e. $C_i = Q_o\phi_i + Q_o\phi_{i+1}$ $(\phi_5 = \phi_1)$ are two-dimensional cones and $D_i = Q_o\phi_i$ are one-dimensional cones where Q_o is the set of non-negative rational numbers. We denote by the same letters the T-stable divisors of X corresponding to the cone D_i . Let $U_i = \operatorname{Spec}(A_i)$ be the T-stable affine open subset of X corresponding to C_i . Let (X_{ij}) be a local equiation of D_i on U_j . Put

$$x = \frac{X_{1j}}{X_{3j}}, \quad y = \frac{X_{2j}}{X_{3j}^m X_{4j}}$$

We can easily see that x, y are independent of j without unit. So we take (X_{ij}) so that x, y are independent of j. Then

$$U_{1} = \operatorname{Spec}(k[x, y])$$

$$U_{2} = \operatorname{Spec}(k[\frac{1}{x}, \frac{y}{x^{m}}])$$

$$U_{3} = \operatorname{Spec}(k[\frac{1}{x}, \frac{x^{m}}{y}])$$

$$U_{4} = \operatorname{Spec}(k[x, \frac{1}{y}])$$

From now on we consider indecomposable equivariant vector bundles of rank 2 on F_m . At first

we show examples of them.

(I) Let E_1 be an equivariant vector bundle defined by the exact sequence

$$0 \rightarrow O_{F_m} \xrightarrow{f} O_{F_m} (aD_1 + bD_2) \oplus O_{F_m} (cD_3) \oplus O_{F_m} (dD_4) \rightarrow E_1^* \rightarrow 0$$

where a, b, c, d are positive integers and f sends l to $(X_{1j}^a X_{2j}^b, X_{2j}^c, X_{4j}^d)$ on U_j . We consider the data (m, P) for E_{I} . Let e_{ij} be defined by

$$O_{Fm}(-aD_1-bD_2)e_{1j} \oplus O_{Fm}(-cD_3)e_{2j} \oplus O_{Fm}(-dD_4)e_{3j} \xrightarrow{f^*} O_{Fm}$$

on U_i where f^* is the dual of f. We take semi-invariant basis (u_i, v_i) of E_i on U_i as follows

$$\begin{split} u_1 &= -\frac{e_{11}}{X_{31}^a X_{31}^{b\,m} X_{41}^b} + \left(\frac{X_{11}}{X_{31}}\right)^a \left(\frac{X_{21}}{X_{41} X_{31}^m}\right)^b \frac{e_{31}}{X_{41}^d}, \quad v_1 = \frac{e_{21}}{X_{31}^c} - \frac{e_{31}}{X_{41}^d}, \\ u_2 &= -\frac{e_{12}}{X_{42}^b X_{12}^{b\,m} X_{12}^a} + \left(\frac{X_{22}}{X_{42} X_{12}^m}\right)^b \frac{e_{32}}{X_{42}^d}, \quad v_2 = \frac{e_{22}}{X_{12}^c} - \left(\frac{X_{32}}{X_{12}}\right)^c \frac{e_{32}}{X_{42}^d}, \\ u_3 &= \frac{X_{13}^{m\,d}}{X_{23}^d} e_{33} - \left(\frac{X_{43} X_{13}^m}{X_{23}}\right)^d \frac{e_{13}}{X_{13}^a X_{23}^b}, \quad v_3 = \frac{e_{23}}{X_{13}^c} - \left(\frac{X_{33}}{X_{13}}\right)^c \frac{e_{13}}{X_{13}^a X_{23}^b}, \\ u_4 &= \frac{X_{34}^{m\,d}}{X_{24}^d} e_{34} - \left(\frac{X_{44} X_{34}^m}{X_{24}^a}\right)^d \frac{e_{24}}{X_{34}^c}, \quad v_4 = -\frac{e_{14}}{X_{24}^a X_{24}^b} + \left(\frac{X_{14}}{X_{34}^a}\right)^a \frac{e_{24}}{X_{24}^c}. \end{split}$$

Then

$$\begin{bmatrix} x^{-a}y^{-a} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{y}{x^m}\right)^{-b} & 0 \\ 0 & x^c \end{bmatrix} \begin{bmatrix} u_2 \\ v_2 \end{bmatrix}, \\
\begin{bmatrix} \left(\frac{y}{x^m}\right)^{-b} & 0 \\ 0 & x^c \end{bmatrix} \begin{bmatrix} u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{x^m}{y}\right)^{-d} & 0 \\ 0 & x^c \end{bmatrix} \begin{bmatrix} u_3 \\ v_3 \end{bmatrix} \\
\begin{bmatrix} \left(\frac{x^m}{y}\right)^{-d} & 0 \\ 0 & x^c \end{bmatrix} \begin{bmatrix} u_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x^{-a} & 0 \\ 0 & y^d \end{bmatrix} \begin{bmatrix} u_4 \\ v_4 \end{bmatrix}, \\
\begin{bmatrix} x^{-a} & 0 \\ 0 & y^d \end{bmatrix} \begin{bmatrix} u_4 \\ v_4 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x^{-a}y^{-a} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \end{bmatrix}.$$

Therefore we can take
$$P$$
 of the data (m, P) for E_1 as follows
$$P(C_1, C_2) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, P(C_2, C_3) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, P(C_3, C_4) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, P(C_4, C_1) = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}.$$
 Since $\phi_1(x) = \phi_2(y) = 1$, $\phi_2(x) = \phi_1(y) = 0$ we can take $x^\alpha y^\beta$ as a character of T . Let ξ_i , η_i be the characters corresponding to u_i , v_i respectively i. e. for example $\xi_1 = x^\alpha y^\alpha$, $\eta_1 = 1$. Then

$$\phi_1(\xi_1) = \phi_1(\eta_4) = a, \ \phi_1(\eta_1) = \phi_1(\xi_4) = 0$$

$$\phi_2(\xi_1) = \phi_2(\xi_2) = b, \ \phi_2(\eta_1) = \phi_2(\eta_2) = 0$$

$$\phi_3(\xi_2) = \phi_3(\xi_3) = 0, \ \phi_3(\eta_2) = \phi_3(\eta_3) = c$$

$$\phi_4(\xi_3) = \phi_4(\xi_4) = d, \ \phi_4(\eta_3) = \phi_4(\eta_4) = 0$$

These integers means the integers of m of the data (m, P) for E_1 i. e.

$$m(\phi_1) = (a, 0), m(\phi_2) = (b, 0), m(\phi_3) = (0, c), m(\phi_4) = (d, 0).$$

(II) Let E_{11} be an equivariant vector bundle defined by the exact sequence

$$0 \to O_{F_m} \xrightarrow{f} O_{F_m} (aD_1) \oplus O_{F_m} (bD_2 + cD_3) \oplus O_{F_m} (dD_4) \to E_{\Pi}^* \to 0$$

where a, b, c, d are positive integers and f sends 1 to $(X_{1j}^a, X_{2j}^b, X_{3j}^c, X_{4j}^d)$ on U_j . Let e_{ij} be the

same as in I. We take semi-invariant basis (u_i, v_i) of E_{\square} on U_i as follows

$$\begin{split} u_1 &= \frac{e_{21}}{X_{41}^b X_{31}^{b\,m} X_{31}^c} - \left[\frac{X_{21}}{X_{41} X_{31}^m} \right]^b \frac{e_{31}}{X_{41}^d}, \quad v_1 = \frac{e_{11}}{X_{31}^a} - \left[\frac{X_{11}}{X_{31}} \right]^a \frac{e_{31}}{X_{41}^d}, \\ u_2 &= \frac{e_{22}}{X_{12}^c X_{42}^b X_{12}^{b\,m}} - \left[\frac{X_{22}}{X_{42} X_{12}^m} \right]^b \left[\frac{X_{32}}{X_{12}} \right]^c \frac{e_{32}}{X_{42}^b}, \quad v_2 = \frac{e_{12}}{X_{12}^a} - \frac{e_{32}}{X_{42}^a}, \\ u_3 &= \frac{e_{23}}{X_{23}^b X_{13}^c} - \left[\frac{X_{33}}{X_{13}} \right]^c \frac{e_{13}}{X_{13}^a}, \quad v_3 = -\frac{X_{13}^{md}}{X_{23}^d} e_{33} + \left[\frac{X_{43} X_{13}^m}{X_{23}} \right]^d \frac{e_{13}}{X_{13}^a}, \\ u_3 &= -\frac{e_{14}}{X_{34}^a} + \left[\frac{X_{14}}{X_{34}} \right]^a \frac{e_{24}}{X_{24}^b X_{34}^c}, \quad v_4 = -\frac{X_{34}^{md}}{X_{24}^d} e_{34} + \left[\frac{X_{44} X_{34}^m}{X_{24}} \right]^d \frac{e_{24}}{X_{24}^b X_{34}^c}, \end{split}$$

Then

$$\begin{bmatrix} y^{-b} & 0 \\ 0 & x^{-a} \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{y}{x^m}\right)^{-b} x^c & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ v_2 \end{bmatrix}, \\
\begin{bmatrix} \left(\frac{y}{x^m}\right)^{-b} x^c & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x^c & 0 \\ 0 & \left(\frac{x^m}{y}\right)^{-d} \end{bmatrix} \begin{bmatrix} u_3 \\ v_3 \end{bmatrix}, \\
\begin{bmatrix} x^c & 0 \\ 0 & \left(\frac{x^m}{y}\right)^{-d} \end{bmatrix} \begin{bmatrix} u_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x^{-a} & 0 \\ 0 & y^d \end{bmatrix} \begin{bmatrix} u_4 \\ v_4 \end{bmatrix}, \\
\begin{bmatrix} x^{-a} & 0 \\ 0 & y^d \end{bmatrix} \begin{bmatrix} u_4 \\ v_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} y^{-b} & 0 \\ 0 & x^{-a} \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \end{bmatrix}.$$

Hence the data (m, P) for E_{\square} are

$$P(C_1, C_2) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, P(C_2, C_3) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, P(C_3, C_4) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, P(C_4, C_1) = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

and

$$m(\phi_1) = (0, a), m(\phi_2) = (b, 0), m(\phi_3) = (c, 0), m(\phi_4) = (0, d)$$

by the same way as I.

(III) Let $E_{\rm III}$ be an equivariant vector bundle defined by the evact sequence

$$0 \to O_{F_m} \xrightarrow{f} O_{F_m}(aD_1) \oplus O_{F_m}(bD_2) \oplus O_{F_m}(cD_3 + dD_4) \to E^*_{\text{III}} \to 0$$

where a, b, c, d are positive integers and f sends 1 to $(X_{1j}^a, X_{2j}^b, X_{3j}^c, X_{4j}^d)$ on U_j . Let e_{ij} be the same as in I. We take semi-invariant basis (u_i, v_i) of $E_{\mathbb{H}}$ on U_i as follows

$$\begin{split} u_1 &= -\frac{e_{21}}{X_{41}^b X_{31}^{bm}} + \left(\frac{X_{21}}{X_{41} X_{31}^m}\right)^b \frac{e_{31}}{X_{31}^c X_{41}^d}, \quad v_1 = -\frac{e_{11}}{X_{31}^a} + \left(\frac{X_{11}}{X_{31}}\right)^a \frac{e_{31}}{X_{31}^c X_{41}^d}, \\ u_2 &= -\frac{e_{22}}{X_{42}^b X_{12}^{bm}} + \left(\frac{X_{22}}{X_{42} X_{12}^m}\right)^b \frac{e_{12}}{X_{12}^a}, \quad v_2 = \frac{e_{32}}{X_{12}^c X_{42}^d} - \left(\frac{X_{32}}{X_{12}}\right)^c \frac{e_{12}}{X_{12}^a}, \\ u_3 &= -\frac{e_{23}}{X_{23}^b} + \frac{e_{13}}{X_{13}^a}, \quad v_3 = \frac{X_{13}^{md}}{X_{23}^d X_{13}^c} e_{33} - \left(\frac{X_{33}}{X_{13}}\right)^c \left(\frac{X_{43} X_{13}^m}{X_{23}}\right)^d \frac{e_{13}}{X_{13}^a}, \\ u_4 &= \frac{e_{14}}{X_{34}^a} - \left(\frac{X_{14}}{X_{34}}\right)^a \frac{e_{24}}{X_{24}^b}, \quad v_4 = \frac{X_{34}^{md}}{X_{24}^d X_{34}^c} e_{34} - \left(\frac{X_{44} X_{34}^m}{X_{24}}\right)^d \frac{e_{24}}{X_{24}^b}. \end{split}$$

Then

$$\begin{bmatrix} y^{-b} & 0 \\ 0 & x^{-a} \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{y}{x^m}\right)^{-b} & 0 \\ 0 & x^c \end{bmatrix} \begin{bmatrix} u_2 \\ v_2 \end{bmatrix},$$

$$\begin{bmatrix} \left(\frac{y}{x^m}\right)^{-b} & 0 \\ 0 & x^c \end{bmatrix} \begin{bmatrix} u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & x^c \left(\frac{x^m}{y}\right)^{-d} \end{bmatrix} \begin{bmatrix} u_3 \\ v_3 \end{bmatrix},
\begin{bmatrix} 1 & 0 \\ 0 & x^c \left(\frac{x^m}{y}\right)^{-d} \end{bmatrix} \begin{bmatrix} u_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x^{-a} & 0 \\ 0 & y^d \end{bmatrix} \begin{bmatrix} u_4 \\ v_4 \end{bmatrix},
\begin{bmatrix} x^{-a} & 0 \\ 0 & y^d \end{bmatrix} \begin{bmatrix} u_4 \\ v_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} y^{-b} & 0 \\ 0 & x^{-a} \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \end{bmatrix}.$$

Hence the data (m, P) for E_{III} are

$$P(C_1, C_2) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, P(C_2, C_3) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, P(C_3, C_4) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, P(C_4, C_1) = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

and

$$m(\phi_1) = (0, a), m(\phi_2) = (b, 0), m(\phi_3) = (0, c), m(\phi_4) = (0, d)$$

by the same way as I.

(IV) Let $E_{\rm IV}$ be an equivariant vector bundle defined by the exact sequence

$$0 \longrightarrow O_{F_m} \xrightarrow{f} O_{F_m} (dD_4 + aD_1) \oplus O_{F_m} (bD_2) \oplus O_{F_m} (cD_3) \longrightarrow E_N^* \longrightarrow 0$$

where a, b, c, d are positive integers and f sends 1 to $(X_{4j}^d X_{1j}^a, X_{2j}^a, X_{3j}^c)$ on U_j . Let e_{ij} be the same as in I. We take semi-invariant basis (u_i, v_i) of E_{iv} on U_i as follows

$$\begin{split} u_1 &= \frac{e_{21}}{X_{41}^b X_{32}^{mb}} - \left(\frac{X_{21}}{X_{41} X_{31}^m}\right)^b \frac{e_{31}}{X_{31}^c}, \quad v_1 = \frac{e_{11}}{X_{31}^a X_{41}^d} - \left(\frac{X_{11}}{X_{31}}\right)^a \frac{e_{31}}{X_{31}^c}, \\ u_2 &= \frac{e_{22}}{X_{41}^b X_{12}^{mb}} - \left(\frac{X_{22}}{X_{42} X_{12}^m}\right)^b \frac{e_{12}}{X_{12}^a X_{42}^d}, \quad v_2 = -\frac{e_{32}}{X_{12}^c} + \left(\frac{X_{32}}{X_{12}}\right)^c \frac{e_{12}}{X_{12}^a X_{42}^d}, \\ u_3 &= -\frac{X_{13}^{md}}{X_{23}^d X_{13}^a} e_{13} + \left(\frac{X_{43} X_{13}^m}{X_{23}}\right)^d \frac{e_{23}}{X_{23}^b}, \quad v_3 = -\frac{e_{33}}{X_{13}^c} + \left(\frac{X_{33}}{X_{13}}\right)^c \frac{e_{23}}{X_{23}^b}, \\ u_4 &= -\frac{X_{34}^{md}}{X_{24}^a X_{24}^d} e_{14} + \left(\frac{X_{14}}{X_{34}^a}\right)^a \left(\frac{X_{44} X_{34}^m}{X_{24}^a}\right)^d \frac{e_{24}}{X_{24}^b}, \quad v_4 = -\frac{e_{34}}{X_{34}^c} + \frac{e_{24}}{X_{24}^b}. \end{split}$$

Then

$$\begin{bmatrix} x^{-a} & 0 \\ 0 & y^{-b} \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{y}{x^m}\right)^{-b} & 0 \\ 0 & x^c \end{bmatrix} \begin{bmatrix} u_2 \\ v_2 \end{bmatrix}
\begin{bmatrix} \left(\frac{y}{x^m}\right)^{-b} & 0 \\ 0 & x^c \end{bmatrix} \begin{bmatrix} u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \left(\frac{x^m}{y}\right)^{-d} & 0 \\ 0 & x^c \end{bmatrix} \begin{bmatrix} u_3 \\ v_3 \end{bmatrix}
\begin{bmatrix} \left(\frac{x^m}{y}\right)^{-d} & 0 \\ 0 & x^c \end{bmatrix} \begin{bmatrix} u_3 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x^{-a}y^d & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_4 \\ v_4 \end{bmatrix}
\begin{bmatrix} x^{-a}y^d & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_4 \\ v_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x^{-a} & 0 \\ 0 & y^{-b} \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \end{bmatrix}$$

Hence the data (m, P) for E_{v} are

$$P(C_1, C_2) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, P(C_2, C_3) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, P(C_3, C_4) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, P(C_4, C_1) = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

and

$$m(\phi_1) = (0, a), m(\phi_2) = (b, 0), m(\phi_3) = (0, c), m(\phi_4) = (d, 0)$$

by the same way as I.

Next we consider the data (m, P) for an equivariant indecomposable vector bundle of rank 2 on F_m . At first we deal the case when m of the data (m, P) satisfies

$$m_{c_1}(\phi_2) = m_{c_2}(\phi_2) = (\alpha_2, 0)$$

and one of

(1)
$$m_{c_2}(\phi_3) = m_{c_2}(\phi_3) = (\alpha_3, 0)$$

(2)
$$m_{c_2}(\phi_3) = m_{c_2}(\phi_3) = (0, \alpha_3)$$

and one of

(a)
$$m_{c_3}(\phi_4) = m_{c_4}(\phi_4) = (\alpha_4, 0)$$

(
$$\beta$$
) $m_{c_3}(\phi_4) = m_{c_4}(\phi_4) = (0, \alpha_4)$

and one of

(a)
$$m_{c_1}(\phi_1) = m_{c_1}(\phi_1) = (\alpha_1, 0)$$

(b)
$$m_{c_1}(\phi_1) = m_{c_1}(\phi_1) = (0, \alpha_1)$$

(c)
$$m_{c_{\mathbf{A}}}(\phi_1) = (\alpha_1, 0), m_{c_{\mathbf{A}}}(\phi_1) = (0, \alpha_1)$$

(d)
$$m_{c_1}(\phi_1) = (0, \alpha_1), m_{c_1}(\phi_1) = (\alpha_1, 0)$$

where α_i are non-negative integers. If one of α_i is zero then we may assume $\alpha_1 = 0$. In this case P of the data (m, P) are

$$P(C_1, C_2) = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix},$$

$$(1) P(C_2, C_3) = \begin{bmatrix} a' & b' \\ 0 & d' \end{bmatrix}, (2) P(C_2, C_3) = \begin{bmatrix} a' & 0 \\ c' & d' \end{bmatrix},$$

(a)
$$P(C_3, C_4) = \begin{bmatrix} a'' & b'' \\ 0 & d'' \end{bmatrix}$$
, (b) $P(C_3, C_4) = \begin{bmatrix} a'' & 0 \\ c'' & d'' \end{bmatrix}$, $P(C_4, C_1) = \begin{bmatrix} a''' & b''' \\ c''' & d''' \end{bmatrix}$.

Case 1, α). In the equivalence relation we take

$$\rho(C_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \rho(C_2) = \begin{bmatrix} 1 & -\frac{b}{a} \\ 0 & 1 \end{bmatrix}, \quad \rho(C_3) = \begin{bmatrix} 1 & -\frac{ab' + bd'}{aa'} \\ 0 & 1 \end{bmatrix},$$

$$\rho(C_4) = \begin{bmatrix} 1 & -\frac{aa'b'' + (ab' + bd')d''}{aa'a''} \\ 0 & 1 \end{bmatrix}$$

Then

$$P'(C_1, C_2) = \rho(C_1)^{-1}P(C_1, C_2) \ \rho(C_2) = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$$

$$P'(C_2, C_3) = \rho(C_2)^{-1}P(C_2, C_3) \ \rho(C_3) = \begin{bmatrix} a' & 0 \\ 0 & d' \end{bmatrix}$$

$$P'(C_3, C_4) = \rho(C_3)^{-1}P(C_3, C_4) \ \rho(C_4) = \begin{bmatrix} a'' & 0 \\ 0 & d'' \end{bmatrix}$$

From the relation

$$P(C_1, C_2) P(C_2, C_3) P(C_3, C_4) P(C_4, C_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

we have

$$P'(C_4, C_1) = \begin{bmatrix} a^{-1}a'^{-1}a''^{-1} & 0\\ 0 & d^{-1}d'^{-1}d''^{-1} \end{bmatrix}$$

Therefore this case defines an decomposable vector bundle.

Case 1, β). We take

$$\rho(C_1) = \begin{bmatrix} 1 & \frac{ab' + bd'}{dd'} \\ 0 & 1 \end{bmatrix}, \quad \rho(C_2) = \begin{bmatrix} 1 & \frac{b'}{d'} \\ 0 & 1 \end{bmatrix}, \quad \rho(C_3) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$\rho(C_4) = \begin{bmatrix} 1 & 0 \\ -\frac{C''}{d''} & 1 \end{bmatrix}.$$

Then the vector bundle E(m, P) defined by the data (m, P) is decomposable.

Case 2, α). We take

$$\rho(C_1) = \begin{bmatrix} 1 & \frac{b}{d} \\ \frac{dc'}{aa'} & 1 + \frac{bc'}{aa'} \end{bmatrix}, \quad \rho(C_2) = \begin{bmatrix} 1 & 0 \\ \frac{c'}{d'} & 1 \end{bmatrix}, \quad \rho(C_3) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \rho(C_4) = \begin{bmatrix} 1 & -\frac{b''}{a''} \\ 0 & 1 \end{bmatrix}.$$

Then E(m, P) is decomposable.

Case 2, β). We take

$$\rho(C_1) = \begin{bmatrix} 1 & \frac{b}{d} \\ 0 & 1 \end{bmatrix}, \ \rho(C_2) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_3) = \begin{bmatrix} 1 & 0 \\ -\frac{C'}{d'} & 1 \end{bmatrix}, \ \rho(C_4) = \begin{bmatrix} 1 & 0 \\ -\frac{C'a'' + C''d''}{d'd''} & 1 \end{bmatrix}.$$

Then E(m, P) is decomposable.

So we may assume that α_i is a positive integer.

Furthermore by taking

$$\rho(C_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \rho(C_2) = \begin{bmatrix} a^{-1} & 0 \\ 0 & d^{-1} \end{bmatrix}, \quad \rho(C_3) = \begin{bmatrix} a^{-1}a'^{-1} & 0 \\ 0 & d^{-1}d'^{-1} \end{bmatrix},$$

$$\rho(C_4) = \begin{bmatrix} a^{-1}a'^{-1}a''^{-1} & 0 \\ 0 & d^{-1}d'^{-1}d''^{-1} \end{bmatrix}$$

we may assume that

$$P(C_{1}, C_{2}) = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix},$$

$$(1) P(C_{2}, C_{3}) = \begin{bmatrix} 1 & b' \\ 0 & 0 \end{bmatrix}, (2) P(C_{2}, C_{3}) = \begin{bmatrix} 1 & 0 \\ C' & 1 \end{bmatrix},$$

$$(a) P(C_{3}, C_{4}) = \begin{bmatrix} 1 & b'' \\ 0 & 1 \end{bmatrix}, (\beta) P(C_{3}, C_{4}) = \begin{bmatrix} 1 & 0 \\ C'' & 1 \end{bmatrix}$$

and

(a)
$$P(C_4, C_1) = \begin{bmatrix} a''' & b''' \\ 0 & d''' \end{bmatrix}, a'''d''' = 1,$$

(b) $P(C_4, C_1) = \begin{bmatrix} a''' & 0 \\ C''' & d''' \end{bmatrix}, a'''d''' = 1,$
(c) $P(C_4, C_1) = \begin{bmatrix} a''' & d''' \\ C''' & 0 \end{bmatrix}, b'''d''' = -1,$
(d) $P(C_4, C_1) = \begin{bmatrix} 0 & b''' \\ C''' & d''' \end{bmatrix}, b'''d''' = -1.$

Under these assumption,

LEMMA 4.1. In the case $(1, \alpha, c)$, $(1, \alpha, d)$, $(1, \beta, d)$ and $(2, \beta, d)$ there is no equivariant vector

bundle.

proof. Case 1, α , c). In this case

$$P(C_1, C_2) P(C_2, C_3) P(C_3, C_4) P(C_4, C_1) = \begin{bmatrix} a''' + c'''(b+b'+b'') & b''' \\ c''' & 0 \end{bmatrix}.$$

But this contradicts to the relation

$$P(C_1, C_2) P(C_2, C_3) P(C_3, C_4) P(C_4, C_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

So this case cannot happen.

Case 1, α , d). In this case

$$P(C_1, C_2) P(C_2, C_3) P(C_3, C_4) P(C_4, C_1) = \begin{bmatrix} c'''(b+b'+b'') & b'''+d'''(b+b'+b'') \\ c''' & d''' \end{bmatrix}.$$

c"must be zero. Then this is a contradiction.

Case 1, β , d).

$$P(C_1, C_2) P(C_2, C_3) P(C_3, C_4) P(C_4, C_1) = \begin{bmatrix} c'''(b+b') & b'''\{1+c''(b+b')\}+d'''(b+b') \\ c''' & c''b'''+d''' \end{bmatrix}.$$

Case 2, β , d).

$$P(C_1, C_2) P(C_2, C_3) P(C_3, C_4) P(C_4, C_1) = \begin{bmatrix} bc''' & b''' \{ 1 + b(c' + c'') \} + bd''' \\ c''' & b'''(c' + c'') + d''' \end{bmatrix}.$$

So these cases cannot happen.

Lemma 4.2. The case $(1, \alpha, a)$, $(1, \alpha, b)$, $(1, \beta, a)$, $(1, \beta, b)$, $(1, \alpha, a)$, $(2, \alpha, b)$, $(2, \beta, a)$ and $(2, \beta, b)$ determine decomposable vector bundles.

proof. By the equivalence relation we may show that $P(C_i, C_{i+1})$ are equivalent to $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Case 1, α , a) and Case 1, α , b). We take

$$\rho(C_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_2) = \begin{bmatrix} 1 & -b \\ 0 & 1 \end{bmatrix}, \ \rho(C_3) = \begin{bmatrix} 1 & -b-b' \\ 0 & 1 \end{bmatrix}, \ \rho(C_4) = \begin{bmatrix} 1 & -b-b'-b'' \\ 0 & 1 \end{bmatrix}.$$

Then

$$P'(C_i, C_{i+1}) = \rho(C_i)^{-1} \rho(C_i, C_{i+1}) \rho(C_i) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} i = 1, 2, 3.$$

From the relation

$$P(C_1, C_2) P(C_2, C_3) P(C_3, C_4) P(C_4, C_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

we have

$$P'(C_4, C_1) = \rho(C_4)^{-1} P(C_4, C_1) \rho(C_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Case 1, β , a) Since

$$P(C_1, C_2) P(C_2, C_3) P(C_3, C_4) P(C_4, C_1)$$

$$= \begin{bmatrix} a'''\{1+c''(b+b')\}+d'''(b+b') & b'''\{1+c''(b+b')\}+d'''(b+b') \\ c''a''' & c''b'''+d''' \end{bmatrix}$$

we have

$$c'' = 0$$
, $d''' = 1$, $a''' = 1$, $b + b' = 0$, $b''' = 0$.

We take

$$\rho(C_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_2) = \begin{bmatrix} 1 & b' \\ 0 & 1 \end{bmatrix}, \ \rho(C_3) = \rho(C_4) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then

$$P'(C_i, C_{i+1}) = \rho(C_i)^{-1} P(C_i, C_{i+1}) \rho(C_{i+1}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

for i = 1, 2, 3, 4 where $C_5 = C_1$.

Case 1, β , b) Since

$$P(C_1, C_2)P(C_2, C_3)P(C_3, C_4)P(C_4, C_1) = \begin{bmatrix} a''' + (b+b') (c''a''' + c''') & (b+b')d''' \\ c''a''' + c''' & d''' \end{bmatrix}$$

we have

$$c''a''' + c''' = 0, d''' = 1, a''' = 1, b + b' = 0.$$

we take

$$\rho(C_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_2) = \begin{bmatrix} 1 & b' \\ 0 & 1 \end{bmatrix}, \ \rho(C_3) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_4) = \begin{bmatrix} 1 & 0 \\ -C'' & 1 \end{bmatrix}.$$

Then

$$P'(C_i, C_{i+1}) = \rho(C_i)^{-1} P(C_i, C_{i+1}) \rho(C_{i+1}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, i=1, 2, 3, 4.$$

Other cases are dealt by the same way. So we only show $\rho(C_i)$.

Case 2, α , a)

$$\rho(C_1) = \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}, \ \rho(C_2) = \rho(C_3) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_4) = \begin{bmatrix} 1 & b+b''' \\ 0 & 1 \end{bmatrix}.$$

Case 2, α , b)

$$\rho(C_4) = \rho(C_1) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_2) = \begin{bmatrix} 1 & -b \\ 0 & 1 \end{bmatrix}, \ \rho(C_3) = \begin{bmatrix} 1+bC' & b \\ C' & 1 \end{bmatrix}^{-1}.$$

Case 2, β , a)

$$\rho(C_1) = \begin{bmatrix} 1 & -b \\ 0 & 1 \end{bmatrix}, \ \rho(C_2) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_3) = \begin{bmatrix} 1 & 0 \\ -C' & 1 \end{bmatrix}, \ \rho(C_4) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Case 2, β , b)

$$\rho(C_1) = \rho(C_2) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_3) = \begin{bmatrix} 1 & 0 \\ -C' & 1 \end{bmatrix}, \ \rho(C_4) = \begin{bmatrix} 1 & 0 \\ C'' & 1 \end{bmatrix}.$$

Therefore these cases determine a decomposable vector bundles.

Lemma 4.3. The case $(1, \beta, c)$, $(2, \alpha, c)$, $(2, \alpha, d)$ and $(2, \beta, c)$ determine an indecomposable vector bundles of rank 2. Furthermore P of (m, P) are equivalent to

$$(1, \beta, c); P(C_{1}, C_{2}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, P(C_{2}, C_{3}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, P(C_{3}, C_{4}) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix},$$

$$P(C_{4}, C_{1}) = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix},$$

$$(2, \alpha, c); P(C_{1}, C_{2}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, P(C_{2}, C_{3}) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, P(C_{3}, C_{4}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$P(C_{4}, C_{1}) = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix},$$

$$(2, \alpha, d); P(C_{1}, C_{2}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, P(C_{2}, C_{3}) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}, P(C_{3}, C_{4}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, P(C_{4}, C_{1}) = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix},$$

$$(2, \beta, c); P(C_{1}, C_{2}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, P(C_{2}, C_{3}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, P(C_{3}, C_{4}) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix},$$

$$P(C_{4}, C_{1}) = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}.$$

proof. Case 1, β , c). Since

$$P(C_1, C_2)P(C_2, C_3)P(C_3, C_4)P(C_4, C_1) = \begin{bmatrix} a'''\{1 + c''(b+b')\} + c'''(b+b') & b'''\{1 + c''(b+b')\} \\ c''a''' + c''' & c''b''' \end{bmatrix}$$

we have

$$b''' \{1+c''(b+b')\} = c''a''' + c''' = 0,$$

$$a''' \{1+c''(b+b')\} + c'''(b+b') = c''b''' = 1.$$

Hence

$$a''' = 1, b + b' = -b''', c''' = -b'''^{-1}, c'' = b'''^{-1}$$

We take

$$\rho(C_1) = \begin{bmatrix} -b''' & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_2) = \begin{bmatrix} -b''' & b'+b''' \\ 0 & 1 \end{bmatrix}, \ \rho(C_3) = \rho(C_4) = \begin{bmatrix} -b''' & 0 \\ 0 & 1 \end{bmatrix}.$$

Then

$$\rho(C_1)^{-1}P(C_1, C_2)\rho(C_2) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\rho(C_2)^{-1}P(C_2, C_3)\rho(C_3) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
\rho(C_3)^{-1}P(C_3, C_4)\rho(C_4) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}
\rho(C_4)^{-1}P(C_4, C_1)\rho(C_1) = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}.$$

Case 2, α , c) Since

$$P(C_1, C_2)P(C_2, C_3)P(C_3, C_4)P(C_4, C_1) = \begin{bmatrix} a'''(1+bc')+c'''\{b''(1+bc')+b\} & b'''(1+bc') \\ c'a'''+c'''(1+c'b'') & c'b''' \end{bmatrix}$$

we have

$$c'=b'''^{-1}$$
, $b=-b'''$, $c'''=-b'''^{-1}$, $a'''=1+b''b'''^{-1}$.

We take

$$\rho(C_1) = \rho(C_2) = \rho(C_3) = \begin{bmatrix} -b''' & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_4) = \begin{bmatrix} -b''' & -b'' \\ 0 & 1 \end{bmatrix}.$$

Then

$$\rho(C_1)^{-1}P(C_1, C_2)\rho(C_2) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
\rho(C_2)^{-1}P(C_2, C_3)\rho(C_3) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}
\rho(C_3)^{-1}P(C_3, C_4)\rho(C_4) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\rho(C_4)^{-1}P(C_4, C_1)\rho(C_1) = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}.$$

Case 2, β , d) Since

 $P(C_1, C_2)P(C_2, C_3)P(C_3, C_4)P(C_4, C_1)$

$$= \begin{bmatrix} c'''\{b''(1+bc')+b\} & b'''(1+bc')+d'''\{b''(1+bc')+b\} \\ c'''(1+c'b'') & c'b'''+d'''(1+c'b'') \end{bmatrix}$$

we have

$$c'=b'''^{-1}$$
, $b''=-b'''$, $c'''=-b'''^{-1}$, $d'''=1+bb'''^{-1}$.

we take

$$\rho(C_1) = \begin{bmatrix} -b^{\prime\prime\prime} & b \\ 0 & 1 \end{bmatrix}, \ \rho(C_2) = \rho(C_3) = \rho(C_4) = \begin{bmatrix} -b^{\prime\prime\prime} & 0 \\ 0 & 1 \end{bmatrix}.$$

Then

$$\rho(C_1)^{-1}P(C_1, C_2)\rho(C_2) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\rho(C_2)^{-1}P(C_2, C_3)\rho(C_3) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}
\rho(C_3)^{-1}P(C_3, C_4)\rho(C_4) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}
\rho(C_4)^{-1}P(C_4, C_1)\rho(C_1) = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$$

Case 2, β , c). Since

$$P(C_1, C_2)P(C_2, C_3)P(C_3, C_4)P(C_4, C_1)$$

$$= \begin{bmatrix} a'''\{1 + b(c'+c'') + bc'''\} & b'''\{1 + b(c'+c'')\} \\ a'''(c'+c'') + c''' & b'''(c'+c'') \end{bmatrix}$$

we have

$$b = -1$$
, $b''' = -b = 1$, $c''' = -b'''^{-1} = -1$, $a''' = 1$, $c' + c'' = -c''' = 1$.

We have

$$\rho(C_4) = \rho(C_1) = \rho(C_2) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \ \rho(C_3) = \begin{bmatrix} -1 & 0 \\ c' & 1 \end{bmatrix}.$$

Then

$$\rho(C_1)^{-1}P(C_1, C_2)\rho(C_2) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\rho(C_2)^{-1}P(C_2, C_3)\rho(C_3) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\rho(C_3)^{-1}P(C_3, C_4)\rho(C_4) = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

$$\rho(C_4)^{-1}P(C_4, C_1)\rho(C_1) = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

THEOREM 4.4. Let F_m be a rational ruled surface. F_m becomes an almost homogeneous variety with standard action of T^2 . An indecomposable equivariant vector bundle of rank 2 on F_m is isomorphic to $E_1(D)$ for some $D \in Pic(F_m)$ where J is one of I, II, III, IV as in the examples.

proof. Since an equivariant vector bundle has a T-linearization we only show that the data (m, P) defines $E_J(D)$, By tensoring O_{Fm} ($\sum_{i=1}^4 m_i D_i$) for some m_i with the vector bundle E(m, P) defined by the data (m, P), we may assume that m of the data (m, P) are the form shown before

lemma 4.1. By lemma 4.3 the cases that (m, P) defines an indecomposable equivariant vector bundle are $(1, \beta, c)$, $(2, \alpha, c)$, $(2, \alpha, d)$, and $(2, \beta, c)$. Clearly these cases determine the vector bundles E_1 , E_{11} , E_{111} , and E_{112} respectively.

Remark 4.5. The same technique will determine an equivariant vector bundle where X is a two-dimensional almost homogeneous variety.

REFERENCES

- [1] M. Demazure ; Sous-groupes algébriques de rang maximum de group de Cremona, Ann. scient. Éc. Norm. Sup., 3(1970) 507-588.
- [2] T. Kaneyama; On equivariant vector bundle on an almost homogeneous variety. Nagoya Math. J. 57 (1975) 65-86.
- [3] G. Kempf et al.; Toroidal embeddings I, Springer Lecture Notes 339.
- [4] K. Miyake and T. Oda; Almost homogeneous algebraic varieties under torus action. Number theory, Algebraic Geometry and commutative algebra, in honor of Y. Akizuki (1973), 71–93.