
Resonance Delocalizabilities of Polyacenes 

Makoto ISIHARA 

Abstract  This paper describes a derivation of a closed expression of resonance delocalizabilities in 
the Hückel model of polyacenes. The derivation stems from the decomposition of determinants 
corresponding to the resonance delocalizabilities into two elementary types of determinants, 
followed by obtaining closed expressions for the elementary types of determinants. The process of 
the derivation is greatly facilitated by using graphs as representing determinants of symmetric 
matrices. The resulting expression of the resonance delocalizabilities reproduces and generalizes the 
features of site reactivities known from the numerical evaluation of superdelocalizabilities for 
several smaller polyacenes.  

1.  Introduction 

Resonance delocalizability is one of practical indices of reactivity in the Hückel model, 
essentially equivalent to “a simple reactivity index” proposed by Fukui et al. (Fukui, Kato, 
Nagata, and Yonezawa, 1961), closely related to Dewar’s localization energy (Dewar 
1952; Dewar and Longuet-Higgins 1952; Fukui, Yonezawa, and Nagata, 1957), and  
regarded as a substitute for superdelocalizability (Fukui, Yonezawa, and Nagata, 1954), 
one of the most reliable indices of reactivity in the Hückel model. Besides being a better 
(qualitative) approximation to superdelocalizability than frontier electron density (Fukui, 
Yonezawa, and Singu 1952; Fukui, Yonezawa, Nagata, and Singu, 1954), resonance 
delocalizability requires no solution of the Hückel eigenvalue problem, directly related to 
the adjacency matrix (Isihara, 2001).  

Though the numerical evaluation of resonance delocalizabilities is surely much simpler 
than that of superdelocalizabilities, this is not a real advantage any more nowadays, at 
least with regard to evaluations for individual systems, because of great developments of 
computational techniques and circumstances. An advantage of resonance delocalizability 
left significant is, if any, a possibility that a closed expression may be found out for a 
family of systems having a specific structure. Closed expressions of eigensolutions in the 
Hückel model are known for several families but the summation process involved in 
superdelocalizabilities strongly prevents us from reaching their closed expressions. This 
situation is true for linear chains, the simplest family (Isihara, 1997). 

This paper derives a closed expression of resonance delocalizabilities for the polyacene 
family, for which, of course, no closed expression of superdelocalizabilities is known so 
far. The second section is preliminary, giving a general description on graphical treatment 
used here. The third section is principal, derving the closed expression. The fourth section 
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concerns what follows from the expression. 

2.  Preliminaries

Suppose the Hückel model of a regular alternant having 2m sites colored black and white. 
Numbering the m black sites from 1 to m and the white from m+1 to 2m, we can write the 
adjacency matrix A of the alternant in the form 

0
0

TB
B

A  (1) 

with an mm invertible submatrix B and its transepose BT. Let LB and LW denote the 
black-site submatrix BBT and the white-site one BTB in A2, respectively, and let L(r) stand 
for the matrix obtained by deleting the r-th row and the r-th column from a matrix L.
Then, the resonance delocalizability Rr on site r is defined by 
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(Isihara 2001). If the alternant has dichromatic symmetry, proper numbering makes LB

and LW identical and we may work with either black or white sites (Isihara, 2007).  
Let G(L) denote the graph corresponding to a symmetric matrix L. We can easily draw 

G(LB) and G(LW) from G(A), in particular, if G(A) is a chemical graph, while G(LB(r))
and G(LW (r)) follow immediately by deleting the vertex r and all edges incident to r
from G(LB) and G(LW). It is convenient for the present purpose to regard G(L) as 
representing the determinant of a symmetric matrix L and to call it the detgraph of L
distinctively. Detgraphs can be decomposed into or reduced to detgraphs according to 
properties of determinants. Graphical representation provides a lucid perspective, 
reflecting structural features of systems and visualizing the process of calculations. 
Though not necessarily intrinsic, it must be indispensable in practice. 

The following three ways of decomposition or reduction of detgraphs suffice for the 
present purpose. The weight of any edge is assumed and kept to be unity there. 
1) Partitioning.  An edge connecting two parts of a detgraph can be removed with 
subtracting the detgraph obtained from the original one by deleting the two verticies 
connected by the edge and all edges incident to the verticies. 

2) Shifting.  The weight w of a vertex of a detgraph can be shifted to v with adding the 
detgraph obtained from the original one by deleting all edges incident to the vertex and 
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by replacing the weight of the isolated vertex with w-v.

w v w-v

3) Trimming.  We can remove the end vertex of weight 1 together with the incident edge, 
decreasing the weight of the vertex losing the edge by 1. As well, we can remove the 
vertex of weight 1 bridging two vertices connected by an edge together with the edge and 
two bridging edges, decreasing each weight of the two vertices by 1. 

w
1

w-1
1

w

v

w-1

v-1

More general trimming is, of course, possible but it hardly seems to be fruitful because of 
causing fractional weights in vertices and edges. What should be tried is not necessarily 
full reduction but rather relevant transfomation into detgraphs calculable in some other 
way. No haphazard trimming will yield any tractable result. 

The most poweful aid for chemical detgraph is Kekulé structure enumeration, on which 
so many results have been accumulated, in particular, for benzenoid hydrocarbons (Cyvin 
and Gutman, 1988). Let C be the adjacency matrix of an alternant having black and white 
sites of the same number and let a detgraph G(F) correspond to the black- or white-site 
submatrix in C2. Then, denoting the algebraic structure count (Wilcox, Jr., 1968; 1969) of 
graph G by ASC(G), we have 

2))(G(ASC CF                (3) 

(Dewar and Longuet-Higgins, 1952). If any Kekulé structure of graph G(C) has an 
identical parity, the right hand side can be replaced by K(G(C))2 with K(G) standing for 
the number of Kekulé structures of graph G. 

Utilization of graphs for determinants is not novel at all in mathematical chemistry 
(Trinajsti , 1983; Dias, 1993) but has been oriented almost exclusively to fragmentation 
of characteristic polynomials of adjacency matrices. Hence, Aside from the partitioning 
mentioned above, no naïve decomposition or reduction prevails.  

3.  Derivation 

Suppose the polyacene of n rings. Since this system is dicromatically symmetric, it is 
enough to work with its black sites. The following figure shows the graph of the 
adjacency matrix and that of the black-site submatrix in the squared adjacency matrix 
together with the numbering of sites used here.  
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From now on, the large black spot on a vertex indicates weight 3 and the small one 
weight 2. Aside from the graph of the adjacency matrix above, where all vertices are 
weightless, the vertex without a spot means the vertex of weight 1. Typical detgraphs for 
Rr and their decompositions by partitioning are exemplified by 

for odd r and by 

for even r. Note that all constituent detgraphs here fall into two types. 
Now, define the three types of detgraphs Xk, Yk, and Zk for natural number k as shown 

in the following figure. 

Xk (k upper triangles) Yk (k upper triangles) Zk (k-1 upper triangles)

Y1X1 Y2
Z2 Z1X2

Since these three are related by shifting as 

and Xk is given explicitly by 
2)1(kX k                               (4) 

from the number of Kekulé structures of the k-ring polyacene, the relationship 
2)1(kZY kk                           (5) 

immediately follows. On the other hand, decomposing Zk by shifting as 

and reducing the first detgraph in the right hand side by the successive trimming 
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1,

we obtain the relationship 

.11kk YZ                        (6) 

Relevant elimination in these two relationships leads us to the recurrence formula 

,12
1 kZZ kk           (7) 

which is solved in an ordinary way to provide 

6/)62)(1( 2 kkkZk                             (8) 

and

6/)1272)(1( 2 kkkYk                     (9) 

as well. The resulting expressions of Xk, Yk, and Zk allow us to extend the range of k to all 
integers with the relationships between them kept unchanged, so that it is appropriate to  
add X = , Y0=2, Z0=1, and X 1=Y 1=Z 1=0 to the definition. 

It is readily found that the decompositions of Rr exemplified above can be written in 
the general form 
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including the case of the end ring sites. This can be still simplified by the relationships 
between Yk 1 and Zk and between Yk and Zk as 
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into which we have only to substitute the expression of Zk. Thus, we attain 
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with the abbreviation 

.1nn                    (13) 

To see the nature of Rr, it will be relevant to make use of the auxiliary site index 

)1(nrs                      (14) 
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varying from –n to n. Then, Rr can be rewritten in the “symmetric” form  

.)even1(48/49)7(

)odd1(12/)113(
222
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nR ns        (15) 

Note that the lower of the right hand side decreases as |s| increases in the prescribed range, 
quite opposite to the upper. 

4.  Remarks 

The closed expression of Rr obtained in the preceding section suffices to analyze site 
reactivities of the polyacene system fully generally. The symmetry of the system allows 
us to confine the range of sites to 11 nr . It is obvious from 

)1odd(10)(2 nrrnnRR rr               (16) 

that Rr on odd-numbered site r decreases as r increases. On the other hand, we have 

)1even2(0))()((2 nrrnrnrnnRR rr      (17) 

with

62n                     (18) 

because of n . Namely, Rr on even-numbered site r increases as r does. Moreover, 
since it holds that 

),2(012
12 nnRR                           (19) 

there follows the sequence 

]2/)1[(242131]2/[2 nn RRRRRR                (20) 

a general result on site reactivities of polyacenes. 
Resonance delocalizability is a relative index of reactivity, only valid for intrasystem 

comparison, and it is suitable to “normalize” it for intersystem comparison or for 
comparison with superdelocalizability as 

rr RB 12 ||                   (21) 

with the smallest positive eigenvalue  of the adjacency matrix (Isihara, 2001). As for 
polyacenes, fortunately, it is known that 

2/1)/cos(89 n                               (22) 

(Coulson, 1948) and |B2| is merely Xn, that is, (n+1)2. Comparison between r and Sr for 
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several smaller polyacenes is shown in Table 1, where we can see complete qualitative 
agreement between them. 

In the next place, let us examine intersystem behaviors. The intrasystem maximum 
max(n) of r is calculated to be 
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and it is readily found that 

)()1( maxmax nn                 (24) 

by applying power series expansion to n Forming a sharp contrast with this, the 
minimum
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fulfills

).()1( minmin nn                  (26) 

This tendency of max(n) and min(n) agrees with the tendency of Smax(n) and Smin(n) for  
smaller polyacenes seen in Table 1.  

Lastly, let us touch the asymptotic behavior of r in long (n>>1) polyacenes. By virtue 
of the principal term approximation 

22)( nn                   (27) 

Table 1 
Resonance delocalizabilities and superdelocalizabilities of smaller polyacenes 

System    Site 6 4 2 1 3 5 7 
Naphthalene r   0.755 0.549 0.344   

Sr   0.994 0.873 0.703   
Anthracene r  1.036 0.673 0.466 0.259   

Sr  1.314 1.073 0.922 0.720   
Tetracene r  1.121 0.590 0.413 0.236 0.177  

Sr  1.505 1.122 0.961 0.750 0.717  
Pentacene r 1.373 1.123 0.519 0.372 0.226 0.153  

Sr 1.917 1.634 1.154 0.991 0.778 0.734  
Hexacene r 1.500 1.089 0.460 0.339 0.218 0.145 0.121 

Sr 2.005 1.730 1.178 1.014 0.800 0.753 0.744 
Sr : Fukui, Yonezawa, and Nagata, 1957. 
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the characteristic n-dependence
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immediately follows. In the end ring, (n) as well as (n) still behaves as 
12

12 )3/()()( nnn                               (29) 

while it is observed that 

3/)( 2
]2/[2 nn                 (30) 

for sufficiently large n. Namely, in long polyacenes, high reactivity concentrates on 
even-numbered sites in the central region but not acutely. 
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