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Abstract  This paper describes an elementary utilization of color symmetry in molecular orbital 
theory. It is shown that the Hückel matrix of an alternant system having dichromatic symmetry 
can be written in a particular form enabling us to treat the eigenvalue problem of the system by 
working with that of a half-size reduced system. Fundamental features of dichromatically 
symmetric systems are elucidated concerning delocalization energies, bond orders, and so on. A 
few remarks are made on reduction for planar alternants and on closed expressions of 
eigensolutions.

1. Introduction

The concept of alternant symmetry has established already in the early days of 
molecular orbital theory (Coulson and Rushbrooke, 1940). The coloration of sites 
with two colors for alternant systems is rather popular in molecular orbital theory 
but, somehow, color symmetry (Loeb, 1971) does not seem to have been utilized so 
far, at least explicitly. This paper describes an elementary utilization of color 
symmetry in molecular orbital theory. 

A conjugated system of -electrons is termed an alternant system, or simply an 
alternant, if the two-color coloration of its sites is possible. As distinct from this, an 
alternant is termed dichromatically symmetric if there exists at least one symmetry 
operation after exchange of colors at every site of the alternant. Let us refer to the 
symmetry operation used for attaining the color symmetry as a recovering operation, 
or a recovering for brevity. Figure 1 will suffice to see what is dichromatic symmetry. 
Naturally, for an alternant to be dichromatically symmetric, it is necessary that it has 
at least one symmetry operation and that the number of its black sites is identical 
with that of white. 

Possible recoverings for an alternant having dichromatic symmetry necessarily 
include at least one of two-fold symmetry operations such as reflection, inversion, 
and two-fold axis rotation. It should be noted that such recoverings provide a 
one-to-one correspondence between each black site and each white. If a 2k-fold axis 
rotation exists as a recovering, then a two-fold axis rotation necessarily does. It is 
obvious that no k-fold rotation for odd k is possible as a recovering because of 
alternancy. 
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Figure 1.  Dichromatic symmetry 

2. The Hückel matrix and its eigensolution  

As usual, in place of the original Hückel matrix H, using a standard coulomb 
integral  and a standard resonance integral , we adopt the adjacency matrix 

/)( IHA  (1) 

as the Hückel matrix. The Hückel model of alternants postulates an identical 
coulomb integral for all sites but does not require an identical resonance integral 
for all bonds. The resonance integral rs for bond rs is replaced by brs, devided by .
If all resonance integrals of an alternant are assumed to equal , the Hückel matrix 
becomes a pure adjacency matrix. Otherwise, it is a weighted adjacency matrix. 

Consider a dichromatically symmetric alternant of m black and m white sites. 
Taking a two-fold symmetry recovering, we can label the black sites from 1 to m
and the white sites from 1 to m so as to make r and r correspond to each 
other by the recovering. Then, in the Hückel matrix A of the alternant, the 
components for ( r, s), ( s, r), ( r, s), and ( s, r) become equivalent. 
Numbering site r with r and site r with r+m, we can write A in the form 

0
0
B

B
A  (2) 
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with a half-size real-symmetric submatrix B. Note that essentially different 
recoverings yield essentially different B’s. 

Since B is real-symmetric, we can regard it as the Hückel matrix of an m-site
system with new numbering from 1 to m. The system can be derived easily from the 
graph of the original alternant by folding r to r or r to r for each r. If the 
original graph has edges of weight brs between r and s (and necessarily between 

s and r), then folding gives edge rs of weight brs. For an edge of weight brr

between r and r, the resulting graph has a loop on site r, which is interpreted as 
the coulomb integral variance brr. When A is supposed to be a pure adjacency matrix, 
the site of weight 1 of the reduced system is symbolized as D for convenience. 
Process of folding is illustrated in Figure 2, which exemplifies “different B’s by 
different recoverings” at a time. See section 4.1 as to general results of reduction for 
planar alternants. 

Let J be the set of integers from 1 to m. Denote the j-th eigenvector of B by vj and 
its eigenvalue by  j, that is, 

jjj vBv )( Jj . (3) 

We can assume the m eigenvectors {vj} to form a complete orthonormal set because 
of the real-symmetricity of B. Then, the 2m orthonormalized eigenvectors {wi} of A
a

Figure 2.  Reduction by folding 

�������	
���
�������

�����

������������ !�� "#�$�%&'&$()*$�+*�',-&./-��% +'$-�()++�$%)



can be labelled suitably with i= 1, , m  to be given by 

j

j
j v

v
w

2
1 )( Jj  (4) 

with its eigenvalue 

jj )( Jj . (5) 

Naturally, {wi} forms a complete set. 
The eigensolution of B leads us immediately to that of A. Reversely, if we know 

the eigensolution of A through any other way, then that of B can be obtained by 
ckecking the alternant symmetry parity of eigenvectors. It will be suitable to refer to 
an original alternant having dichromatic symmetry as a parent (system) and to its 
half-size reduced system as its child (system). Child systems are rather hardly 
alternant.

Consider two different child systems of a parent, denoting their Hückel matrices B
and .B  Since the two matrices must result from different numberings of sites of the 
same color, there exist two permutation matrices S and T fulfilling 

BSTBTSB TT . (6) 

Thus it holds that 

TBTSBSB TT 222 , (7) 

which means that B2 and 2B  do not differ essentially. They provide an idential set 
of eigenvalues. 

3. Fundamental features 

3.1  Delocalization energies
In the Hückel model, eigenvectors belonging to positive, zero, and negative 
eigenvalues are traditionally called occupied, nonbonding, and unoccupied orbitals, 
respectively. Let J+, J0, and J be the subsets of J, respectively, corresponding to 
occupied, nonbonding, and unoccupied orbitals of B and let f+, f0, and f  be the 
number of elements of J+, J0, and J , respectively. The f+ occupied and the f
unoccupied orbitals of B lead to f++f  occupied orbitals of A with eigenvalues  j’s 
(j J+) and  j’s (j J ) and, as well, lead to f++f  unoccupied with  j’s (j J ) and 

 j’s (j J+). The f0 nonbonding orbitals of B give rise to f0 pairs of nonbonding 
orbitals of A. A system devoid of nonbonding orbitals is termed regular. Obviously, if    
a child system is regular, so is its parent and vice versa. Using the trace  of B, we  
have
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have

Jj
j

Jj
j , (8)

which may give a little information about the eigenvalue distribution of B. Still, in 
general, no detailed knowledge is available for “smaller-larger” estimation between 

’s for j J and ’s for j J  without solving the eigenvalue problem. 
In the 2m-electron ground state of A, the f++f  occupied orbitals are doubly 

occupied literally and, if f++f <m, the eigenspace spanned by the 2f0 nonbonding
orbitals is half-filled. Since no nonbonding orbitals contribute, the delocalization 
energy E (in the unit of ) for the 2m-electron ground state is expressed as 

Jj
jE 2 , (9) 

which can be rewritten as 

EE ~2  (10) 

with  

Jj
jE 2~  (11) 

the delocalization energy for the 2f+-electron ground state of B.

3.2  Bond orders 
Let us refer to the electron density-bond order matrix as the p-density matrix for 
brevity. It is readily found that the partial p-density matrix of A is given by 

jj

jj
j ~~

~~

2
1 )( Jj  (12) 

with that of B
T
jjj vv~ )( Jj . (13) 

Assume that the 2m-electron ground state of A makes each of nonbonding orbitals 
w+j and w j for j J0 singly occupied if 00f . By virtue of the completeness 

Jj
j I~ , (14) 

the p-density matrix Q for the state can be written as 
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IP
PIQ ~
~

 (15) 

with

Jj
j

Jj
jP ~~~ . (16) 

The result for the two diagonal blocks is solely due to alternancy and, as is 
well-known, common to alternants (Coulson and Rushbrooke, 1940). 

To see what the off-diagonal block P~  implies, using the completeness of { j
~ }

again, we rewrite it as 

IQP ~~  (17) 

with

0

2~
Jj

j
Jj

jQ , (18) 

which is just the p-density matrix for the 2f++f0-electron ground state of B. In general, 
since charge densities in this state of B are not necessarily unity, we cannot regard 
P~  genuinely as the bond order matrix for the state. The bond order matrix P for the 
2m-electron ground state of A has the neat relation 

0~
~0

P
PP  (19) 

with the “quasi” bond order matrix P~  for the 2f++f0-electron ground state of B.
The case of 00f  has a concise way to the result above. Let F be the Hückel 

matrix of a general regular system having f occupied orbitals. Then, it is easily 
proved that the p-density matrix Q  for the 2f-electron ground state is expressed as 

2/12 )(FFIQ . (20) 

Substituting A for F and Q for Q , we have (Hall, 1955) 

2/12 )(~ BBP , (21) 

while trivial substitution gives 

2/12 )(~ BBIQ . (22) 

It is thus obvious that P~  is the quasi bond order matrix for the 2f+-electron ground 
state of B.
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3.3  Ruedenberg bond orders and resonance delocalizabilities 
Ruedenberg bond order (Ruedenberg, 1954; Ham and Ruedenberg, 1958) is a useful 
bond order quantity for regular alternants, regarded as true resonance-theoretic bond 
order in stead of the primitive bond order in resonance theory (Isihara, 1996). The 
Ruedenberg bond order rs between sites r and s is defined as the (r, s) component of 
the inverse of the Hückel matrix. It follows from 

0
0

1

1
1

B
B

A  (23) 

that all of r s, s r, s r, and r s are equal to (B 1)rs; r r and r r to (B 1)rr.
However, because no child system must be an alternant with traceless B, we cannot 
immediately read (B 1)rs as the Ruedenberg bond order between sites r and s in the 
child system. 

Resonance delocalizability is a practical index of reactivity for regular alternants. 
It requires to solve no eigenvalue problem, being an excellent substitue for 
superdelocalizability (Isihara, 2001). Since we have 

2

2
2

0
0

B
B

A , (24)

the resonance delocalizability on site r, defined as r-th diagonal component of A 2, is 
simply that of B 2. This quantity may be interpreted as the resonance delocalizability 
on site r of the child system. Still, we have to extend the concept of resonance 
delocalizability relevantly to nonalternant systems. Note that B 2 as well as B2

remains essentially identical for all child systems of a parent.  

3.4  Characteristic polynomials 
A few methods are known for decomposition of larger symmetrical systems into 
smaller subsystems to factorize the characteristic polynomial of the larger. As for the 
decomposition of systems with two-fold symmetry, we have mirror plane 
fragmentation (McClelland, 1974, 1982) and two-fold rotation factorization (D’Amato, 
1979). Folding by dichromatic symmetry works sufficiently in place of these, as far as 
dichromatically symmetric alternants are concerned. Let D(X) be the characteristic 
polynomial of a parent system and let C(X) be that of its child. If we know  

m

k

km
k XcXC

0

)( )1( 0c , (25) 
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then the relationship 

)()()1()( XCXCXD m  (26) 

immediately provides a factorized form of D(X).
It is obvious that D(X) is a polynomial of X2. If we have interest in the coefficients 

of D(X) in 
m

k

km
k XdXD

0

22
2)( )1( 0d , (27) 

it will suffice to use 

iki
i

i
k ccd 22 )1( , (28) 

where i runs from max(0, 2k m) to min(2k, m). In particular, the tail coefficient d2m

is simply ( 1)mcm
2. If the parent system contains no 4n-membered ring and if its 

Hückel matrix is nonweighted, the absolute value of the tail coefficient gives the 
square of the number K of Kekulé structures and, therefore, K is obtainable as the 
absolute value of the tail coefficient of the child. 

4. Parent and child systems 

4.1  Reduction for planar alternants 
When a parent system is planar, we may take reflection and/or inversion into account 
as a recovering. It will be appropriate to present general results of reduction for this 
exclusively frequent case. 

Reflection works quite plainly as a recovering. No site is on the plane of reflection 
for dichromatic symmetry and, normally (see below), only bonds between equivalent 
sites of different colors can cross the plane of reflection in a parent system. Thus, its 
child has as many D’s as the parent has bonds crossing the plane of reflection. See 
(a) in Figure 3. 

Dichromatic symmetry allows no site on the center of inversion. A parent system 
having inversion as a recovering can be devided into two equivalent connected parts 
each of which contains either r or r for every r. If r of one part has a bond 
with s of the other, then s of the part does r of the other. The two bonds are 
converted into the bond between sites r and s in its child. If we have a bond between 

r and r (if the center of inversion is on a bond) in the parent, the bond is 
converted into D in the child. See (b) in Figure 3. 
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(a) Reflection                      (b) Inversion 

(c) Crossing bonds 

Figure 3.  Reduction for planar alternants 

We suppose that no bonds cross with each other in the above. This supposition is, 
however, not inevitable from a graph-theoretical point of view. If we exclude the 
supposition, it becomes superficial to distinguish between reflection and inversion. 
Only the two-fold symmetric one-to-one correspondence between sites of different 
colors remains essential. The situation is illustrated by (c) in Figure 3. 

4.2  Closed expressions of eigensolutions 
The most interesting fact resulting from the present utilization of dichromatic 
symmetry is that it connects different systems through simple and exact relation of 
eigenvalues and eigenvectors. Remarkable connection exits also between child 
systems of a parent, as already mentioned. 

In particular, if a closed expression of an eigensolution is known for either a 
parent or a child system, that of the other follows directly. This must be a very 
important aspect, because closed expressions are often fruitful and the possibility of 
obtaining closed expressions is one of the greatest advantages of the Hückel model. 
Table 1 shows several examples related to the closed expressions of linear and cyclic 
polyenes (Hückel, 1932; Lennard-Jones, 1937), linear polyacenes (Coulson, 1947) 
and linear square lattices (Nagao, Nishikawa, and Aono, 1993). 

5. Concluding remarks 

So many conjugated systems are not only alternant but also dichromatically 
symmetric, so that introducing the concept of dichromatic symmetry seems to be 
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never                           Table 1
From one closed expression to another 

parent child parent child 

never futile. Although the present utilization is quite elementary, it provides a lucid 
perspective of applications. The author would like to regard this paper rather as an 
encouragement to further investigations of utilizing color symmetry in molecular 
orbital theory. 

Accepted May, 9, 2007 
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