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A note on the Jordan decomposition of derivations

Shin Ikeda

Abstract

As a linear map, a derivation of a K-algebra can be decomposed into semi-simple part
and nilpotent part and the each part is also a K-derivation of the K-algebra. If the semi

-simple part is not trivial the K-algebra is decomposed into eigenspaces.

§1 Jordan decompositions.

First, we recall the Jordan decomposition of an linear endomorphism of a finite dimen-
sional vector space. Let K be an algebraically closed field and V be a finite dimensional
vector space over K. If f is a K-linear endomorphism of V then there is a semi-simple K

-linear endomorphism s and a nilpotent K-linear endomorphism n of V such that
f=s+n and sn=ns.

Furthermore, n and s are uniquely determined by f. We denote s by f; and n by f,, and we call

f; the semi-simple part of f and f, the nilpotent part of f. Let 1, ..., A, be the eigen values
of f and let V,={x €V|fs(x) =A;x} fori=1, 2, ..., n. Then V, consists of elements x such
that (f—24,)™(x) =0 for some m>0. V is a direct sum of V,, ..., V..

From now on, we assume that ch(K) =0. We apply the Jordan decomposition to a finite

dimensional K-algebra.

Theorem 1. Let A be a finite dimensional K-algebra and D a K-derivation of A. Then
D, and D, are K-derivations of A.

Proof. Put S=D and N=D,. [f S=0 there is nothing to prove. Let S#0. Then A is
a direct sum of eigenspaces A, of S. Let x€A, and y€A,. Then S(x) =Ax and S(y) =uy.
So, there are integers n, m>0 such that (D—21)"(x) =0 and (D—x)™(y) =0. By the formula

(D-1-w ) =24 ) (D=1 @) (D= ()
we get (D—A—pu)*(xy) =0 for k>n+m. This shows that xy€A,+,. Then,
Sxy)=A+u)xy=Ax)y+x(uy) =S(x)y+xS(y).

Hence S is a K-derivation of A.
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Let (A, m, K) be a complete local ring and let Der (A) be the set of K-derivations of A.
It is well-known that Der(A) is an A-module and has a structure of a Lie algebra over K.
We refer the reader to H. Matsumura’s book for the fundamental properties of complete

local rings and derivations.

In the suquel R denotes the formal power series ring K[ [X,, ..., X,]] in X,, ..., X, over
K and A=R/I for some ideal I of R. Let &, be the K-derivation of R given by 8, (X;) = d;.
For any K-derivation @ of A there exist A,, ..., A, € R such that

X mod]l)=A,0,(X)+--+A,9(X) mod I

for X€R and 9 is denoted by a,9, +---+a,ad,, where a,—=A; mod 1.
Suppose that a;€m for i=1, ..., n. Then @ (m*) Cm* by Leibniz rule. Hece, 8 induces
a K-derivation 8, of A/m* such that

7, O = Oy 7y,
where m.: A—A/m* is the natural projection.

Applying Theorem 1 to a,, we have the Jordan decomposition
O = Gs T Gkn-

There is a polync.)mial f(X)eK[X] such that 8,=1(8,) and f(0) =0. Since 3, maps the
maximal ideal of A/m* into itself the same is true for g, and &,,. Let ¢.: A/mx"'—A/m*

be the natural projection. Then we have ¢, s (m*/m*“"') =0 and we have a K-derivation
S of A/m* such that

P15 = Sy

Similarly, we have a K-derivation N of A/m* such that
@110 = N

Let A,, ..., A be eigenvalues of 3,,,s and decompose
A/mEt = A DDA,

where A, ={xEA/m*"!| 916 (X) = A;X}.
Then

A/mi= 2 ¢ (A)
For a€ A, we have
S (@) = ¢ (Buris (@) = Lighy (a).
Hence S is semi-simple and ¢, (A;) is an eigenspace of S.

If (8s1n)™= 0 we have
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0= (ak+m>m:Nm¢k-

Since ¢, is onto we have N™=(.
From Ok+1nOk+15 = Ox+15sOk+1n WE have

NSQSk :N¢kak+1s: ¢kak+1nak+1s:¢kak+1sak+1n:SN¢k.

Since ¢, is surjective we have SN=NS. Therefore, by the uniqueness of the Jordan
decomposition, o, =S and 3,=N. Now we have

P S 1s = FhsPi and @y S+ 1n = Bn Px-
For ac A, we put a, = 3 (a mod m*) and by, = 3,,(a mod m*). Then we have
b (ak+1) =a, and b (bi+1) =b.

Since A is complete

(0,a;, @2, . .-, Ak, ... E lim A/m¥=A and
k

(0, by, by, ..., by, .. .)€ lim A/m*.
k

we can define two maps 9J; and &,, from A into itself, by

83(3):(0, dy, A2, « - .y Ak, - . - ) and
An(a)=(0, by, by, ..., by, ...

Clearly, o5 and o, are K-derivations of A and 9 =0a;+ 8,. Thus, we have proved:

Theorem 2. If 9 is a K-derivation of a complete local ring (A, m, K) such that 2 (m)
Cm, then there are K-derivations 8, and 8, of A such that 8=23,+ 8, and, for k=1, 2, . ..
, the K-derivations & and &, of A/m* induced from 8, and 8, are semi-simple and nilpotent,

respectively, and 98, = 8,0s.

§2 Decomposition of complete local rings.

Let 9@ be a K-derivation of a complete local ring (A, m, K) such that 8 (m) Cm and 8,s#

0. If A,=0, A1, ..., A, are eigenvalues of 8,,, we can decompose
A/m?*=ADA DDA,

where A; ={x€m/m?| 9, (x) = A;x}.

Since 9, (K) =0 and 8,s(m/m?) €m/m?, we have A,&m/m? if 1,#0. Fix A; (4;#0). Let
Ay ={xEA/M"|3(x) =A,x}. As we have seen in §1, ¢, maps A,,,; onto A,;. For any x&
A, we can find a, €A, (k=2, 3,...) such that a,=x, ax=é¢y (ax,;) for K=2,3,.... Then

a=1(0, a,, a3, ... )€ lim A/mk=A,
k
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and 9 (a) = A,a.

Applying this argument to a basis of m/m?* we can find minimal generators x;, X», . . .
X, of m such that 8, (x;) = A,uX;, for some eigenvalue A, of 2. Let ACK be an additive
semi-group generated by Ao, ..., A.. If x, yEA/m" satisfy 8 (X) =AX, 3 (y) =uy and xy +
0, we have 3 (xy) = (1 +u)xy by the proof of Theoreml. Let A,= (I_IEI’I_]_ Ay, where 1 €A
and A, ={x€eA/m¥| o (x) =Ax}. Then

A,={acsAl|a,(a) =1a} and A;A,CA,.,.
Now we can decompose
AEA

Note that A is a countable set and let A= {1, g, . . . .. }. (1) means that any a€A can be

written uniquely in the form
a=a,;ta;t+--+a;+-,

where 9;(a;) =ma;, and this infinite sum makes sense in the m-adic topology. We have

proved:

Theorem 3. Let 8 be a K-derivation of A such that 8 (m) <m and 8, #0. Then, there
is a countable semi-group A={u, t, . ...} contained in K such that any a& A can be written

uniquely in the form
a:al+az+"'aj+"',

where a, satisfies 3 (a;) =wa; with ,y€A. Moreover, if we put A, ={asA|d,(a) =21a} for 2
€A, we have AJA,CA, ...

Example 1. Let I be an ideal of R generated by homogeneous polynomials.
Then, 0=x,0; +X,0; + "+ X, x; =X, mod I, is a K-derivation of A. Clearly, 9 is semi

-simple and we have a decomposition

A=X1A,, where A=7Z..,.

AEA

A, is the set of homogeneous elements of degree n.

Example 2. Let I be an ideal of R generated by monomials. Then, x,;8; is a K-derivation
of A. For any elements a;,a,, . .., an €K, 9= ,,X,0, + a,X,3, + - + an X, 3, is a semi-simple
K-derivation of A. We have

A= Z A,
AeEA

, Where A: {k1a/1 +kza2+ "'+kna/n~ki€Z;u}-
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Example 3. Let A=K[[X,Y,Z]]/(X?4+Y?+Z2+XYZ). Then,

1 o 1 o
<X+2 YZ)aY (Y+—2—XZ)—83(‘

induces a K-derivation @ of A. 3, is given by 3,(x) = —y, 8,(y) =x, where x and y are the
images of X and Y in A/m?, respectively. The eigenvalues of 9, are 0,1 and —i, where i?= —
1. We have
A= 2 AA,
AEA

where A={kilkeZ}.

§3 Exponential of derivation.

In this section, we assume that K= C, the complex number field. For any nXn complex

matrix A we can define the exponential

exp(A) =lim(E+A/n)"

n-oo

I
=2

of A, see Chapter 1 of [C] for details. If AB=BA we have exp(A+B) =exp(A)exp(B). We
consider the exponential of a C -derivation of a finite dimensional C -algebra.

Let A be a finite dimensional C -algebra and & be a C -derivation of A. Fix a basis x,,
Xs, =+, Xp of A. Then 8 is given by a matrix D= (a;;). We define the exponential exp(3) to
be the linear map given by exp(D). The following Lemma 4 and Corollary 5 are easy
exercises, cf. Chapter 2 of [V]. Let G be the C-algebra automorphism group of A.

Lemma 4. Let A be a finite dimensional C-algebra. Then a € -linear endomorphism
2 of A is a C-derivation of A if and only if for any tER, exp(td) is a C-algebra

automorphism of A.

Corollary 5. The Lie algebra of G is isomorphic to the space of C-derivations of A.

We apply these results to a complete local C-algebra. Let (A, m, C) be a complete local
ring of the form C[[X,, X,, =- X,]]/I. G denotes the C -algebra automorphism group of A
and, for k=1, 2, -+, G, the C -algebra automorphism group of A/m*. Note that G= lim G..
Let Der(A) be the set of C-derivations of A and we put D, =Der (A/m¥). ‘

Definition 6. (1) An ideal I of A is called a D-ideal if @ (I) <1 for all 9€Der(A).
(2) An ideal I of A is called a G-ideal if ¢(I) €I all ¢=G. If m is a D-ideal, we have
Der(A) = Jlim D.. Let e, be the exponential map D, — Gy given by e (8y) =exp(ay) for &
€D,. Let usk assume that m is a D-ideal and let 9€Der (A). For k=1, 2, --+, @ induces a C
-derivation &, of A/m¥*. Then,
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6:<el<al)y ez(az), €3<83), - € lim G,=G.
k

Hence, we can define a map Exp: Der (A) — G. If 9, s&Der (A) satisfy 8¢ =69 then Exp (o +
8) =Exp(9)Exp(d). Let a=03,+ 3, be the Jordan decompostion of 8. Then we have Exp
(o) =Exp(3,) Exp(a,).

Theorem 7. If m is a D-ideal then a G-ideal is a D-ideal.

Proof. Let I be a G-ideal and 9€Der(A). Put as=Exp(ta), t&R. Then, for k=1, 2,
.-+, we have an automorphism o, =exp (t3,) of A/m*. For any x&€I+m*/m* we have g, (x) =
lim t7! (g (x) —x) €I+ m*/m* because I is a G-ideal and A/m* is a finite dimensional C
~t;l(igebra. This implies that 8 (I) CI+m* for k=1, 2, ---. It follows that

(D) C N (I+m) =1

It is natural to conjecture that Theorem 7 is true for any base field of characteristic 0.
If K+ C then Exp(as) does not make sense in general but Exp(a,) does, bacause 3, is
nilpotent for all k.

We collect several results on D-deals.

Lemma 8. Let K be a field with ch(K) =0 and (A, m, K) a complete local K-algebra.
Then:
(1) If I and J are D-ideals of A then v I,1NJ, I+], IJ and I: J are D-ideals.
(2) If I is a D-ideal then associated primes are D-ideals.
(3) A is regular if and only if 0 and A are the only D-ideals of A.
Proof. See [S1] and [S2].

Proposition 9. If A is regular then non-zero G-ideals are m-primary.

Proof. Let I a G-ideal which is not m-primary. We may assume that I is a radical ideal
which is not maximal. Let a&m? be an elment which is not a zero-divisor of A/I and & be
a C-derivation of A. Then ao induces a nilpotent derivation of A/m¥, for k=1, 2, ---. Hence
Exp(aa) is a well defined automorphim of A. For any x€1, we have Exp(ad) (x) —x€aA
NI=al and a '(Exp(ad) (x) —x)&€l. But, we have a '(Exp(ad) (x) —x) =38 (x) +ab for
some b€ A. Therefore, we have a(I) CI+aA. Replacing a by a*, we have o (I) £I+a*A for
k=1, 2, ---. Hence we have 9 (1) CI, I is a D-ideal and, by Lemma 8, I=0.

Theorem 10. Let (A, m, €) be a complete local C-algebra. If A is not regular and m
in a D-ideal then, for p&SpecA, A, is not regular if p containes a G-ideal I such that ht (I) >
0.
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Proof. It is enough to show that V(I) is contained the singular locus Sing (A) of A. Let
J be the defining ideal of Sing(A). Suppose that there is a minimal prime p of I such that
p=2J. By Lemma 8 and Theorem 6, p is a D-ideal. We can find a system of parameters x;,
X,, ***, Xq of A so that x,, X,, -+, X, form a system of parameters of A/p. Then, C [[x., Xz,
-+, X]]Np=0 and A/p is finte over the image of C[[x,, X,, **-, x;]] in A/p. Let S=C [[x,,
Xs, **+, X] ] and L the field of fractions of S. Then the field of fractions M of A/p is a finite
separable extension of L. We apply the theory of universally finite module of differentials
to our complete local rings. See [SS] for fundamental theory of universally finite module of
differentials, see also [K]. Let Q. be the universally finite module of differentials of A over
€. Then Der(A) is isomorphic to Hom, (Q4, A). Since Q, is a finite A-module and A, is
flat over A, we have Der (A,) =Hom, (Qs ®a A,, A,) =Der (A) &, A,. Then we have 3, (A,)
CpA, for all 9€Der(A,). Let B be the pA,-adic conpletion of A,. By [SS], the universally
finite module of differentials of B over € is isomorphic to Q. & B and hence, we have Der
(B) =Der(A,)®, B. From the exact sequence

s X A—Q,—>Q4s—0,

we have Der, (B) =Hom, (Q,s, B) CDer (B). Since M is finite separable over L we have Dery
(B) =Der. (B). We see that Dery (B) is a submodule of Der (B) =Der (A) Q. B. Hence, pB
is a D-ideal of B=M[[Y4, Y., -, Y:]]. By Lemma 8, we get pB=0 and consequenly, pA, =
0, but this contradicts to ht(p) >0. Therefore, every minimal prime of I containes the
defining ideal of Sing(A).
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