A note on the Jordan decomposition of derivations

Shin Ikeda

Abstract

As a linear map, a derivation of a K-algebra can be decomposed into semi-simple part and nilpotent part and the each part is also a K-derivation of the K-algebra. If the semi-simple part is not trivial the K-algebra is decomposed into eigenspaces.

§1 Jordan decompositions.

First, we recall the Jordan decomposition of an linear endomorphism of a finite dimensional vector space. Let K be an algebraically closed field and V be a finite dimensional vector space over K. If \(f \) is a K-linear endomorphism of V then there is a semi-simple K-linear endomorphism s and a nilpotent K-linear endomorphism n of V such that

\[f = s + n \text{ and } sn = ns. \]

Furthermore, n and s are uniquely determined by f. We denote s by \(f_s \) and n by \(f_n \), and we call \(f_s \) the semi-simple part of f and \(f_n \) the nilpotent part of f. Let \(\lambda_1, \ldots, \lambda_n \) be the eigen values of \(f_s \) and let \(V_i = \{ x \in V | f_s(x) = \lambda_i x \} \) for \(i = 1, 2, \ldots, n \). Then \(V_i \) consists of elements x such that \((f - \lambda_i)^m(x) = 0 \) for some \(m > 0 \). V is a direct sum of \(V_1, \ldots, V_n \).

From now on, we assume that \(\text{ch}(K) = 0 \). We apply the Jordan decomposition to a finite dimensional K-algebra.

Theorem 1. Let A be a finite dimensional K-algebra and D a K-derivation of A. Then \(D_s \) and \(D_n \) are K-derivations of A.

Proof. Put \(S = D_s \) and \(N = D_n \). If \(S = 0 \) there is nothing to prove. Let \(S \neq 0 \). Then A is a direct sum of eigenspaces \(A_\lambda \) of S. Let \(x \in A_\lambda \) and \(y \in A_\mu \). Then \(S(x) = \lambda x \) and \(S(y) = \mu y \). So, there are integers \(n, m > 0 \) such that \((D - \lambda)^n(x) = 0 \) and \((D - \mu)^m(y) = 0 \). By the formula

\[(D - \lambda - \mu)^k(xy) = \sum_{i=0}^{k} \binom{k}{i} (D - \lambda)^i(x)(D - \mu)^{k-i}(y) \]

we get \((D - \lambda - \mu)^k(xy) = 0 \) for \(k > n + m \). This shows that \(xy \in A_{\lambda + \mu} \). Then,

\[S(xy) = (\lambda + \mu)xy = (\lambda x)y + x(\mu y) = S(x)y + xS(y). \]

Hence \(S \) is a K-derivation of A.
Let \((A, m, K) \) be a complete local ring and let \(\text{Der}(A) \) be the set of \(K \)-derivations of \(A \). It is well-known that \(\text{Der}(A) \) is an \(A \)-module and has a structure of a Lie algebra over \(K \). We refer the reader to H. Matsumura's book for the fundamental properties of complete local rings and derivations.

In the sequel \(R \) denotes the formal power series ring \(K[[X_1, \ldots, X_n]] \) in \(X_1, \ldots, X_n \) over \(K \) and \(A=R/I \) for some ideal \(I \) of \(R \). Let \(\partial_i \) be the \(K \)-derivation of \(R \) given by \(\partial_i (X_j) = \delta_{ij} \).

For any \(K \)-derivation \(\partial \) of \(A \) there exist \(A_1, \ldots, A_n \in R \) such that

\[
\partial \left(X \equiv \text{mod} \ I \right) = A_1 \partial_1 (X) + \cdots + A_n \partial_n (X) \equiv \text{mod} \ I
\]

for \(X \equiv R \) and \(\partial \) is denoted by \(a_1 \partial_1 + \cdots + a_n \partial_n \), where \(a_i = A_i \equiv \text{mod} \ I \).

Suppose that \(a_i \in m \) for \(i = 1, \ldots, n \). Then \(\partial \left(m^k \right) \subseteq m^k \) by Leibniz rule. Hence, \(\partial \) induces a \(K \)-derivation \(\partial_k \) of \(A/m^k \) such that

\[
\pi_k \partial = \partial_k \pi_k,
\]

where \(\pi_k : A \rightarrow A/m^k \) is the natural projection.

Applying Theorem 1 to \(\partial_k \), we have the Jordan decomposition

\[
\partial_k = \partial_{k_1} + \partial_{k_2}.
\]

There is a polynomial \(f(X) \in K[X] \) such that \(\partial_{k_1} = f(\partial_k) \) and \(f(0) = 0 \). Since \(\partial_k \) maps the maximal ideal of \(A/m^k \) into itself the same is true for \(\partial_{k_1} \) and \(\partial_{k_2} \). Let \(\phi_k : A/m^k+1 \rightarrow A/m^k \) be the natural projection. Then we have \(\phi_k \partial_{k_1} (m^k/m^k+1) = 0 \) and we have a \(K \)-derivation \(S \) of \(A/m^k \) such that

\[
\phi_k \partial_{k_1} = S \phi_k.
\]

Similarly, we have a \(K \)-derivation \(\mathcal{N} \) of \(A/m^k \) such that

\[
\phi_k \partial_{k_2} = \mathcal{N} \phi_k.
\]

Let \(\lambda_1, \ldots, \lambda_r \) be eigenvalues of \(\partial_{k_1} \) and decompose

\[
A/m^k+1 = A_1 \oplus \cdots \oplus A_r,
\]

where \(A_i = \{ x \in A/m^k+1 | \partial_{k_1} (x) = \lambda_i x \} \).

Then

\[
A/m^k = \sum_{i=1}^r \phi_k (A_i)
\]

For \(a \in A_i \) we have

\[
S(\phi_k (a)) = \phi_k (\partial_{k_1} (a)) = \lambda_i \phi_k (a).
\]

Hence \(S \) is semi-simple and \(\phi_k (A_i) \) is an eigenspace of \(S \).

If \((\partial_{k_1})^m = 0 \) we have
\[0 = \phi_k(\partial_{k+1})^m = N^m \phi_k. \]

Since \(\phi_k \) is onto we have \(N^m = 0 \).

From \(\partial_{k+1} \partial_{k+1} = \partial_{k+1} \partial_{k+1} \) we have
\[N \phi_k \partial_{k+1} = \phi_k \partial_{k+1} \partial_{k+1} \partial_{k+1} = \phi_k \partial_{k+1} \partial_{k+1} \partial_{k+1} = SN \phi_k. \]

Since \(\phi_k \) is surjective we have \(SN = NS \). Therefore, by the uniqueness of the Jordan decomposition, \(\partial_{m} = S \) and \(\partial_{n} = N \). Now we have
\[\phi_k \partial_{k+1} = \partial_{k} \phi_k \text{ and } \phi_k \partial_{n+1} = \partial_{k} \phi_k. \]

For \(a \in A \), we put \(a_k = \partial_k \text{ (a mod m^k)} \) and \(b_k = \partial_n \text{ (a mod m^k)} \). Then we have
\[\phi_k(a_{k+1}) = a_k \text{ and } \phi_k(b_{k+1}) = b_k. \]

Since \(A \) is complete
\[(0, a_0, a_1, \ldots, a_k, \ldots) \in \varprojlim_k A/m^k = A \text{ and } \]
\[(0, b_0, b_1, \ldots, b_k, \ldots) \in \varprojlim_k A/m^k. \]

we can define two maps \(\partial_s \) and \(\partial_n \), from \(A \) into itself, by
\[\partial_s(a) = (0, a_0, a_1, \ldots, a_k, \ldots) \text{ and } \]
\[\partial_n(a) = (0, b_0, b_1, \ldots, b_k, \ldots). \]

Clearly, \(\partial_s \) and \(\partial_n \) are \(K \)-derivations of \(A \) and \(\partial = \partial_s + \partial_n \). Thus, we have proved:

Theorem 2. If \(\partial \) is a \(K \)-derivation of a complete local ring \((A, m, K)\) such that \(\partial(m) \subseteq m \), then there are \(K \)-derivations \(\partial_s \) and \(\partial_n \) of \(A \) such that \(\partial = \partial_s + \partial_n \) and, for \(k = 1, 2, \ldots \), the \(K \)-derivations \(\partial_{s_k} \) and \(\partial_{n_k} \) of \(A/m^k \) induced from \(\partial_s \) and \(\partial_n \) are semi-simple and nilpotent, respectively, and \(\partial_s \partial_n = \partial_n \partial_s \).

§2 Decomposition of complete local rings.

Let \(\partial \) be a \(K \)-derivation of a complete local ring \((A, m, K)\) such that \(\partial(m) \subseteq m \) and \(\partial_{2^k} \neq 0 \). If \(\lambda_0 = 0, \lambda_1, \ldots, \lambda_r \) are eigenvalues of \(\partial_{2^k} \), we can decompose
\[A/m^2 = A_0 \oplus A_1 \oplus \cdots \oplus A_r, \]
where \(A_i = \{ x \in m/m^2 | \partial_{2^k}(x) = \lambda_i x \} \).

Since \(\partial_{2^k}(K) = 0 \) and \(\partial_{2^k}(m/m^2) \subseteq m/m^2 \), we have \(A_i \subseteq m/m^2 \) if \(\lambda_i \neq 0 \). Fix \(\lambda_i (\lambda_i \neq 0) \). Let
\[A_{ki} = \{ x \in A/m^k | \partial_{2^k}(x) = \lambda_i x \}. \]

As we have seen in §1, \(\phi_k \) maps \(A_{k+1} \) onto \(A_{k+1} \). For any \(x \in A_1 \), we can find \(a_k \in A_{k+1} \) (\(k = 2, 3, \ldots \)) such that \(a_k = x \), \(a_k = \phi_k(a_{k+1}) \) for \(K = 2, 3, \ldots \). Then
\[a = (0, a_2, a_3, \ldots) \in \varprojlim_k A/m^k = A. \]
and $\partial_s(a) = \lambda a$.

Applying this argument to a basis of m/m^2 we can find minimal generators x_1, x_2, \ldots, x_n of m such that $\partial_s(x_i) = \lambda^{(s)} x_i$, for some eigenvalue $\lambda^{(s)}$ of ∂_s. Let $\Lambda \subseteq K$ be an additive semi-group generated by $\lambda_0, \ldots, \lambda_r$. If $x, y \in \Lambda/m^k$ satisfy $\partial_s(x) = \lambda x$, $\partial_s(y) = \mu y$ and $xy > 0$, we have $\partial_s(xy) = (\lambda + \mu)xy$ by the proof of Theorem 1. Let $A_k = \lim_{k \to \infty} A_k$, where $\lambda \in A$ and $A_k = \{x \in \Lambda/m^k | \partial_s(x) = \lambda x\}$. Then

$$A_1 = \{a \in A | \partial_s(a) = \lambda a\} \text{ and } A_1 A_r \subseteq A_{1+r}.$$

Now we can decompose

$$(1) \quad A = \sum_{\lambda \in \Lambda} A_1.$$

Note that Λ is a countable set and let $\Lambda = \{\mu_1, \mu_2, \ldots\}$. (1) means that any $a \in A$ can be written uniquely in the form

$$a = a_1 + a_2 + \cdots + a_l,$$

where $\partial_s(a_i) = \mu_i a_i$, and this infinite sum makes sense in the m-adic topology. We have proved:

Theorem 3. Let ∂ be a K-derivation of A such that $\partial(m) \subseteq m$ and $\partial_s \neq 0$. Then, there is a countable semi-group $\Lambda = \{\mu_1, \mu_2, \ldots\}$ contained in K such that any $a \in A$ can be written uniquely in the form

$$a = a_1 + a_2 + \cdots a_l,$$

where a_i satisfies $\partial_s(a_i) = \mu_i a_i$ with $\mu_i \in \Lambda$. Moreover, if we put $A_1 = \{a \in A | \partial_s(a) = \lambda a\}$ for $\lambda \in \Lambda$, we have $A_1 A_r \subseteq A_{1+r}$.

Example 1. Let I be an ideal of R generated by homogeneous polynomials.

Then, $\partial = x_1 \partial_1 + x_2 \partial_2 + \cdots + x_n \partial_n$, $x_i = X_i$ mod I, is a K-derivation of A. Clearly, ∂ is semi-simple and we have a decomposition

$$A = \sum_{\lambda \in \Lambda} A_1,$$

where $\Lambda = \{a_1 \lambda_1 + a_2 \lambda_2 + \cdots + a_n \lambda_n | a_i \in \Lambda\}$.

A_1 is the set of homogeneous elements of degree n.

Example 2. Let I be an ideal of R generated by monomials. Then, $x_i \partial_i$ is a K-derivation of A. For any elements $a_1, a_2, \ldots, a_n \in K$, $\partial = a_1 x_1 \partial_1 + a_2 x_2 \partial_2 + \cdots + a_n x_n \partial_n$ is a semi-simple K-derivation of A. We have

$$A = \sum_{\lambda \in \Lambda} A_1,$$

where $\Lambda = \{k_1 a_1 + k_2 a_2 + \cdots + k_n a_n | k_i \in \mathbb{Z}_{\geq 0}\}$.
Example 3. Let \(A=K[[X,Y,Z]]/(X^2+Y^2+Z^2+XYZ) \). Then,

\[
(X + \frac{1}{2} YZ) \frac{\partial}{\partial Y} - (Y + \frac{1}{2} XZ) \frac{\partial}{\partial X}
\]
induces a \(K \)-derivation \(\partial \) of \(A \). \(\partial_x \) is given by \(\partial_x(x) = -y \), \(\partial_x(y) = x \), where \(x \) and \(y \) are the images of \(X \) and \(Y \) in \(A/m^2 \), respectively. The eigenvalues of \(\partial_x \) are 0, i and \(-i\), where \(i^2 = -1 \). We have

\[
A = \sum_{\lambda \in \Lambda} A_{\lambda},
\]

where \(\Lambda = \{k\imath | k \in \mathbb{Z}\} \).

§3 Exponential of derivation.

In this section, we assume that \(K = \mathbb{C} \), the complex number field. For any \(n \times n \) complex matrix \(A \) we can define the exponential

\[
\exp(A) = \lim_{n \to \infty} (E + A/n)^n = \sum_{k=0}^{\infty} \frac{1}{k!} A^k
\]
of \(A \), see Chapter 1 of [C] for details. If \(AB = BA \) we have \(\exp(A + B) = \exp(A) \exp(B) \). We consider the exponential of a \(\mathbb{C} \)-derivation of a finite dimensional \(\mathbb{C} \)-algebra.

Let \(A \) be a finite dimensional \(\mathbb{C} \)-algebra and \(\partial \) be a \(\mathbb{C} \)-derivation of \(A \). Fix a basis \(x_1, x_2, \ldots, x_n \) of \(A \). Then \(\partial \) is given by a matrix \(D = (a_{ij}) \). We define the exponential \(\exp(\partial) \) to be the linear map given by \(\exp(D) \). The following Lemma 4 and Corollary 5 are easy exercises, cf. Chapter 2 of [V]. Let \(G \) be the \(\mathbb{C} \)-algebra automorphism group of \(A \).

Lemma 4. Let \(A \) be a finite dimensional \(\mathbb{C} \)-algebra. Then a \(\mathbb{C} \)-linear endomorphism \(\partial \) of \(A \) is a \(\mathbb{C} \)-derivation of \(A \) if and only if for any \(t \in \mathbb{R} \), \(\exp(t\partial) \) is a \(\mathbb{C} \)-algebra automorphism of \(A \).

Corollary 5. The Lie algebra of \(G \) is isomorphic to the space of \(\mathbb{C} \)-derivations of \(A \).

We apply these results to a complete local \(\mathbb{C} \)-algebra. Let \((A, m, \mathbb{C}) \) be a complete local ring of the form \(\mathbb{C}[[X_1, X_2, \ldots, X_n]]/I \). \(G \) denotes the \(\mathbb{C} \)-algebra automorphism group of \(A \) and, for \(k = 1, 2, \ldots, G_k \) the \(\mathbb{C} \)-algebra automorphism group of \(A/m^k \). Note that \(G = \lim_k G_k \). Let \(\text{Der}(A) \) be the set of \(\mathbb{C} \)-derivations of \(A \) and we put \(D_k = \text{Der}(A/m^k) \).

Definition 6. (1) An ideal \(I \) of \(A \) is called a D-ideal if \(\partial(I) \subseteq I \) for all \(\partial \in \text{Der}(A) \).

(2) An ideal \(I \) of \(A \) is called a G-ideal if \(\sigma(I) \subseteq I \) all \(\sigma \in G \). If \(m \) is a D-ideal, we have \(\text{Der}(A) = \lim_k D_k \). Let \(e_k \) be the exponential map \(D_k \to G_k \) given by \(e_k(\partial) = \exp(\partial) \) for \(\partial \in D_k \). Let us assume that \(m \) is a D-ideal and let \(\partial \in \text{Der}(A) \). For \(k = 1, 2, \ldots, \partial \) induces a \(\mathbb{C} \)-derivation \(\partial_k \) of \(A/m^k \). Then,
\[\sigma = (e_1(\partial_1), e_2(\partial_2), e_3(\partial_3), \cdots) \in \lim_{\kappa} G_k = G. \]

Hence, we can define a map $\text{Exp}: \text{Der}(A) \rightarrow G$. If $\partial, \delta \in \text{Der}(A)$ satisfy $\partial \delta = \delta \partial$ then $\text{Exp}(\partial + \delta) = \text{Exp}(\partial) \text{Exp}(\delta)$. Let $\partial = \partial_h + \partial_n$ be the Jordan decomposition of ∂. Then we have $\text{Exp}(\partial) = \text{Exp}(\partial_h) \text{Exp}(\partial_n)$.

Theorem 7. If m is a D-ideal then a G-ideal is a D-ideal.

Proof. Let I be a G-ideal and $\partial \in \text{Der}(A)$. Put $\sigma_t = \text{Exp}(t \partial)$, $t \in \mathbb{R}$. Then, for $k = 1, 2, \cdots$, we have an automorphism $\sigma_{t_k} = \exp(t \partial_k)$ of A/m^k. For any $x \in I + m^k/m^k$ we have $\partial_k(x) = \lim_{t \to 0} t^{-1}(\sigma_{t_k}(x) - x) \in I + m^k/m^k$ because I is a G-ideal and A/m^k is a finite dimensional \mathbb{C}-algebra. This implies that $\partial(I) \subseteq I + m^k$ for $k = 1, 2, \cdots$. It follows that

\[\partial(I) \subseteq I \cap (I + m_m^k) = I. \]

It is natural to conjecture that Theorem 7 is true for any base field of characteristic 0. If $K = \mathbb{C}$ then $\text{Exp}(\partial_k)$ does not make sense in general but $\text{Exp}(\partial_n)$ does, because ∂_n is nilpotent for all k.

We collect several results on D-ideals.

Lemma 8. Let K be a field with $ch(K) = 0$ and (A, m, K) a complete local K-algebra. Then:

1. If I and J are D-ideals of A then $\sqrt{I J}, I \cap J, I + J$ and $I : J$ are D-ideals.
2. If I is a D-ideal then associated primes are D-ideals.
3. A is regular if and only if 0 and A are the only D-ideals of A.

Proof. See [S1] and [S2].

Proposition 9. If A is regular then non-zero G-ideals are m-primary.

Proof. Let I a G-ideal which is not m-primary. We may assume that I is a radical ideal which is not maximal. Let $a \in m^2$ be an element which is not a zero-divisor of A/I and ∂ be a C-derivation of A. Then $a \partial$ induces a nilpotent derivation of A/m^k, for $k = 1, 2, \cdots$. Hence $\text{Exp}(a \partial)$ is a well defined automorphism of A. For any $x \in I$, we have $\text{Exp}(a \partial)(x) - x \in aA \cap I = aI$ and $a^{-1}(\text{Exp}(a \partial)(x) - x) \in I$. But, we have $a^{-1}(\text{Exp}(a \partial)(x) - x) = \partial(x) + ab$ for some $b \in A$. Therefore, we have $\partial(I) \subseteq I + aA$. Replacing a by a^k, we have $\partial(I) \subseteq I + a^kA$ for $k = 1, 2, \cdots$. Hence we have $\partial(I) \subseteq I$, I is a D-ideal and, by Lemma 8, $I = 0$.

Theorem 10. Let (A, m, \mathbb{C}) be a complete local \mathbb{C}-algebra. If A is not regular and m in a D-ideal then, for $p \in \text{Spec} A$, A_p is not regular if p contains a G-ideal I such that $ht(I) > 0$.
Proof. It is enough to show that \(V(I) \) is contained the singular locus \(\text{Sing}(A) \) of \(A \). Let \(J \) be the defining ideal of \(\text{Sing}(A) \). Suppose that there is a minimal prime \(p \) of \(I \) such that \(p \supseteq J \). By Lemma 8 and Theorem 6, \(p \) is a \(D \)-ideal. We can find a system of parameters \(x_1, x_2, \ldots, x_d \) of \(A \) so that \(x_1, x_2, \ldots, x_r \) form a system of parameters of \(A/p \). Then, \(\mathbb{C}[[x_1, x_2, \ldots, x_r]] \cap p = 0 \) and \(A/p \) is finite over the image of \(\mathbb{C}[[x_1, x_2, \ldots, x_r]] \) in \(A/p \). Let \(S = \mathbb{C}[[x_1, x_2, \ldots, x_r]] \) and \(L \) the field of fractions of \(S \). Then the field of fractions \(M \) of \(A/p \) is a finite separable extension of \(L \). We apply the theory of universally finite module of differentials to our complete local rings. See [SS] for fundamental theory of universally finite module of differentials, see also [K]. Let \(\Omega_A \) be the universally finite module of differentials of \(A \) over \(\mathbb{C} \). Then \(\text{Der}(A) \) is isomorphic to \(\text{Hom}_\mathbb{A}(\Omega_A, A) \). Since \(\Omega_A \) is a finite \(A \)-module and \(A_p \) is flat over \(A \), we have \(\text{Der}(A_p) = \text{Hom}_\mathbb{A}(\Omega_A \otimes_\mathbb{A} A_p, A_p) = \text{Der}(A) \otimes_\mathbb{A} A_p \). Then we have \(\mathfrak{a}_p (A_p) \subseteq pA_p \) for all \(\mathfrak{a} \in \text{Der}(A_p) \). Let \(B \) be the \(pA_p \)-adic completion of \(A_p \). By [SS], the universally finite module of differentials of \(B \) over \(\mathbb{C} \) is isomorphic to \(\Omega_A \otimes_\mathbb{A} B \) and hence, we have \(\text{Der}(B) = \text{Der}(A_p) \otimes_\mathbb{A} B \). From the exact sequence

\[
\Omega_B \otimes_\mathbb{A} A \rightarrow \Omega_A \rightarrow \Omega_{A/S} \rightarrow 0,
\]

we have \(\text{Der}_A(B) = \text{Hom}_\mathbb{A}(\Omega_{A/S}, B) \subseteq \text{Der}(B) \). Since \(M \) is finite separable over \(L \) we have \(\text{Der}_M(B) = \text{Der}_L(B) \). We see that \(\text{Der}_M(B) \) is a submodule of \(\text{Der}(B) = \text{Der}(A) \otimes_\mathbb{A} B \). Hence, \(pB \) is a \(D \)-ideal of \(B = M[[Y_1, Y_2, \ldots, Y_r]] \). By Lemma 8, we get \(pB = 0 \) and consequently, \(pA_p = 0 \), but this contradicts to \(\text{ht}(p) > 0 \). Therefore, every minimal prime of \(I \) contains the defining ideal of \(\text{Sing}(A) \).

References

